20.Feb.2019 - VIIRS active fire data available as VNPFIRE product.
12.Feb.2019 - FEERv1.0 Emissions processing stream fixed.
08.Feb.2019 - MODFIRE processing stream fixed.
31.Jul.2018 - Suomi-NPP VIIRS fire data added to Africa Explorer.
This IDS-2013 successor project aims to reinforce and amplify the preceding IDS-2009 interdisciplinary study by incorporating the potential impacts of similar environmental phenomena and processes in the adjoining Northern and Southern Africa as well as the Atlantic and Indian Oceans on the water cycle dynamics in the NSSA region. Our team is well constituted, with scientists from different but complementary areas of expertise, including biomass burning and surface characterization, aerosols and atmospheric modeling, cloud processes and precipitation, surface hydrology, ground-water hydrology, and climate modeling. Most of these scientists have substantial experience working in the NSSA region. This research is strategically designed to encompass in depth and breadth the different disciplines relevant to the subject matter, with dynamic linkages throughout the research period, in order to obtain a comprehensive result that relates the scientific outcome to societal impacts, as well as future projections of these. This is needed to formulate mitigation options to avert the looming regional/global catastrophic outcome of a potentially irreversible 'takeover' of that region by drought/desertification, exemplified by the drying up of Lake Chad and other water resources.
Principle Investigator
NASA Goddard Space Flight Center
Greenbelt, MD
University of Missouri, Kansas City (UMKC)
Kansas City, MO
NASA Goddard Space Flight Center
Greenbelt, MD
USRA, NASA Goddard Space Flight Center
Greenbelt, MD
USRA, NASA Goddard Space Flight Center
Greenbelt, MD
USRA/GESTAR, NASA Goddard Space Flight Center
Greenbelt, MD
NASA Goddard Space Flight Center
Greenbelt, MD
University of Missouri, Kansas City (UMKC)
Kansas City, MO
ESSIC/UMCP, NASA Goddard Space Flight Center
Greenbelt, MD
Beltsville Center for Climate System Observation
Atmospheric Science Program, Howard University
Washington, DC
NASA Goddard Space Flight Center
Greenbelt, MD
University of Nebraska
Lincoln, NE
Desert Research Institute of the Nevada System of Higher Education
Reno, NV
To what extent does the seasonal biomass burning affect land-cover and ecosystem changes, surface albedo, smoke and dust emissions, atmospheric heating rates, and the consequent radiative forcing in the NSSA region?
How do these surface and atmospheric changes affect rainfall variability, soil moisture content and retention, surface runoff, infiltration, and the groundwater mass balance, particularly in the Lake Chad basin and surrounding regions?
What are the relative magnitudes and spatial distributions of the various forcing and feedback effects that link the different phenomena both within the NSSA region and the adjoining regions?
How will the NSSA regional climate and ecosystem balance be affected by the current degradation trend due to biomass burning, and how can this be mitigated to enhance societal benefits both in the present and the future?
For atmospheric processes, airborne measurements from past field campaigns, such as AMMA/NAMMA, SAFARI-2000, and continuous measurements from AERONET and other ground-based monitoring stations will be used. However, for accurate parameterization and verification of the ground-based processes, a strategic field survey will be conducted in the vicinity of Lake Chad throughout the 3-year period of the proposed research, in collaboration with our partners at LCBC in Chad and University of Maiduguri (UMaid) in Nigeria.
To further pursue engagements with both national and regional agencies, including the Chad Basin Development Authority (CBDA) and the river basin authorities of the rivers that feed into Lake Chad, and to enlarge its scope, because it is anticipated that our results could be beneficial in a variety of ways to various regional and international organizations with interest in the NSSA region, such as the LCBC for water resources management, the UNDP for planning strategies and setting their development support priorities, and the IPCC for use in future climate assessments. Also, we will actualize collaboration with Regional Centre for Mapping of Resources for Development (RCMRD) to leverage the SERVIR-Africa infrastructure and their regional knowledge for dissemination of valuable results to applications communities with training options for sustainable implementation of positive solutions.
The northern sub-Saharan African (NSSA) region, extending from the southern fringes of the Sahara to the Equator, and stretching west to east from the Atlantic to the Indian ocean coasts, plays a prominent role in the genesis of global atmospheric circulation and the birth of such major (and often catastrophic) events as hurricanes and the distribution of the Saharan dust to other parts of the world. Therefore, this NSSA region represents a critical variable in the global climate change equation. Recent satellite-based studies have revealed that the NSSA region has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be a major driver of the regional carbon, energy, and water cycles. We acknowledge that the rainy season in the NSSA region is from April to September while biomass burning occurs mainly during the dry season (October to March). Nevertheless, these two phenomena are indirectly coupled to each other through a chain of complex processes and conditions, including land-cover and surface-albedo changes, the carbon cycle, evapotranspiration, drought, desertification, surface water runoff, ground water recharge, and variability in atmospheric composition, heating rates, and circulation. We propose an interdisciplinary research effort, which seeks to address the effects of the intense biomass burning observed from satellite year after year across the NSSA region on the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. This proposal brings together a multi-disciplinary team of scientists from different but complimentary fields of expertise to embark on an integrated study that will unravel the coupling of these phenomena and associated processes and outcomes. Through this effort we aim to provide a robust analysis of the impacts of recent (2000 to the present) biomass-burning by monitoring and assessing multiple regional surface, atmospheric, and water cycle processes through remote sensing and modeling approaches that integrate research, systems engineering, and applications expertise to best make the connections between the various identified processes and phenomena, in order to achieve concrete results for societal benefits and climate assessments. This proposal responds to two main subelements of this ROSES-2009 Interdisciplinary Research in Earth Science (IDS) program solicitation, namely, (i) Subelement 5: Water and Energy Cycle Impacts of Biomass Burning, and (ii) Subelement 1: Integrated Earth System Responses to Extreme Disturbances.
Principle Investigator
NASA Goddard Space Flight Center
Greenbelt, MD
Council for Scientific and Industrial Research
South Africa
NASA Goddard Space Flight Center
Greenbelt, MD
NASA Goddard Space Flight Center
Greenbelt, MD
NASA Goddard Space Flight Center
Greenbelt, MD
University of Missouri
Kansas City, MO
NASA Goddard Space Flight Center
Greenbelt, MD
University of Nebraska
Lincoln, NE
Desert Research Institute of the Nevada System of Higher Education
Reno, NV
The phenomenal seasonal biomass burning all across the vegetated parts of the NSSA study region will be critically studied to understand its impacts on ecosystem changes, and the effects of the generated heat and smoke on the hydrological cycle. Biomass burning intensity is best studied from satellite measurements of fire radiative power (FRP), which are presently available globally only from the Moderate-resolution imaging spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites. MODIS measures FRP globally 4 times a day at 1-km spatial resolution. FRP has been demonstrated to be directly related to the rates of biomass consumption and smoke emission [Wooster, 2002; Ichoku and Kaufman, 2005; Wooster et al., 2005; Roberts et al., 2005; Ichoku et al., 2008]. All FRP data acquired by MODIS from the start of scientific data availability (February 2000) up to the time of research (10 years or more) will be analyzed, in order to evaluate the rates of biomass burning and smoke particulate emission, and how they may have changed during the decade. FRP data derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the geostationary Meteosat-8 platform, which observes Africa and Europe virtually every 15 mins at 3-km spatial resolution, will be used to complement MODIS FRP data in order to derive the total daily/monthly/seasonal burned biomass and smoke aerosol emissions. Aerosol measurements from MODIS will be used in combination with the smoke emissions to evaluate the smoke fraction of the total aerosol. Plume height products from the Multi-angle Imaging Spectro-Radiometer (MISR) sensor aboard Terra will be used, in combination with lidar atmospheric profile from CALIPSO, to determine smoke plume height relative to the boundary layer height, as a means of establishing the degree of physical interaction between smoke aerosols, dust, clouds, and radiation. To establish the linkage between fires and ecosystem changes, we will also analyze burned area and vegetation products from MODIS. The derived results will be provided as input to several of the other analysis and modeling efforts described below, as well as for use in applications to benefit the regional and global societies.
This part of the study will focus on quantitative estimation of biomass burning impacts on surface albedo variations both spatially and temporally. The land surface bidirectional reflectance distribution function (BRDF) and albedo products derived from MODIS 10-year dataset will be used to check the sensitivity of the surface albedo to anthropogenic biomass burning activities over the NSSA region, especially during the fire season, taking into account the results from the fire and landcover change analysis described in the Biomass burning, radiative heat release, and smoke emission section. We will develop an approach to delineate the sub-regions of the NSSA region whose albedo seasonal cycle is significantly affected by biomass burning. The performance of the method will be evaluated by comparison with results of combined aircraft and MODIS data analysis over southern Africa, where the SAFARI 2000 field campaign took place in 2000 and over Canada where the ARCTAS field campaign took place in 2008. Together with the other team members of this proposal, we will investigate how the resulting surface brightening/darkening phenomena affect the surface and atmospheric heating rates, moisture regime and rainfall, and their implications for the regional climate.
The atmospheric heating rates resulting from direct heat release from fires and direct radiative forcing due to the interaction of the solar radiation and the smoke will be carefully investigated. This will be done using the RAMS-AROMA model, which is a composite atmospheric model that integrates: (i) RAMS: a non-hydrostatic atmospheric model that has been successfully used to simulate a wide range of dynamical phenomena [e.g., Pielke et al., 1992, Adegoke et al. 2003], and (ii) AROMA: an aerosol transport model that includes aerosol emission, advection, convection (vertical motion), dry and wet deposition processes, and direct radiative effects [Wang et al., 2006]. The fire radiative energy and smoke emission products derived from the Biomass burning, radiative heat release, and smoke emission section will be used as input into the RAMS-AROMA to study their radiative impacts on surface energy budget and atmospheric lapse rate. The changes of sensible heat, latent heat, and total solar input at the surface will be used as part of the inputs (by other Co-Is) to drive the NASA Land Information Systems (LIS) and other hydrology models for studying the smoke impacts on the change of surface run-off and water budget.
An important part of the proposed project is to determine the relationship between the increase in land surface exposure, and surface and atmospheric heating caused by biomass burning and subsequent changes in surface evaporation and water loss during the dry season in the NSSA region (October to March). We aim to evaluate the degree to which the water and energy budget components are affected by changes in surface and atmospheric heating from biomass burning by examining their temporal trend and correlation during observed burning events. Our initial approach will include the use of land surface modeling, regression analyses, and machine-learning techniques including neural networks [e.g. Egmont-Petersen et al., 2002] to isolate the energy and water balance variables that are susceptible to change from biomass burning. This will be done by careful examination of the individual land surface modeling variables and parameters with regard to biomass burning events (e.g., burn scars) throughout the data record. Such a methodology will also allow a 'scenario analysis' and/or 'impact maps' to be performed based on sensitivity analysis over the region. The project team will use a variety of datasets from different sources to train and validate the neural networks developed during the course of this project, including satellite-based estimates of burn area, surface and air temperature, soil moisture, precipitation, and terrestrial water storage. br> We expect that knowledge learned from this approach will strengthen our ability to understand underlying cause and effect relationships, and ultimately to describe and model the detailed processes linking these parameters. By applying the calculated changes in land cover and surface energy budget within a land surface model, we can analyze the impact of the changes in forcing to individual water cycle elements including surface soil moisture, river runoff, and terrestrial water storage. This approach will be strengthened through the optimization and validation of the land surface models within the NASA Land Information System (LIS) using in situ data (already acquired under the auspices of the AMMA/NAMMA initiative and a separate Lake Chad project, in which Lee and Adegoke in our proposal team are currently involved, as indicated in the Groundwater systems evaluation, with focus on the drying of Lake Chad and relationship to biomass burning and climate section).
Several studies have noted the potential role of aerosols as a contributing factor to the late 20th century Sahel drought [e.g. Rotstayn and Lohmann, 2002; Held et al. 2005]. These studies argue that the pattern of cooling of Atlantic Ocean sea surface temperatures owing to the absorption and scattering of dust, pollution, and smoke provides the mechanism for altering rainfall patterns over the Sahel. Recent modeling results argue that transport of smoke and dust from the NSSA region leads to a lower tropospheric thermal anomaly through direct absorption of solar energy, which is sufficient to shift Sahel rain patterns northward [Lau et al. 2009]. Observations over the Atlantic Ocean are consistent with this response [Wilcox et al., in preparation]. These results imply an important coupling between emissions of smoke and dust from biomass burning and desertification and surface hydrology through the response of precipitation patterns to the radiative forcing of the aerosols. Furthermore, results from the AMMA and NAMMA field campaigns indicate that African smoke and dust can act as nuclei for cloud drops and ice [Twohy et al. 2009; A. Jefferson, personal communication]. Therefore, there are potentially strong impacts via aerosol modification of clouds to impact both the surface energy balance over NSSA and the sea surface temperature of the Atlantic Ocean. NASA models and satellite data sets will be used to test the sensitivity of precipitation patterns over Africa to these processes. Thus we will include the soil moisture retrievals (discussed in the Ecosystem changes, soil moisture, and surface water cycle section) in these analyses as well. Of particular interest will be satellite-based characterizations of the response of soil moisture to the precipitation pattern, the response of the African Easterly Jet to the soil moisture pattern, and the response of precipitation patterns to the presence of smoke, dust, and pollution. The satellite data must be interpreted in the context of sensitivity tests using an appropriate model. In the case of the interrelationships noted above, we rely on GEOS-5. Our group is funded (through the NASA ROSES-2008 Modeling and Analysis Program) to improve and test a comprehensive parameterization for aerosol direct and indirect (via aerosol-cloud-precipitation interactions) radiative forcing [Sud and Lee, 2007]. Under the current proposal, we will pursue a set of sensitivity studies varying the rate of aerosol emissions and controlling the variability of soil moisture to reveal separately the role of each of these components in driving precipitation variability.
Understanding the interactions between surface water and ground water is critical to finding out how climate change and land-cover change due to biomass burning in the NSSA affects the shrinkage of Lake Chad. Preliminary studies have been conducted to understand the soil infiltration toward the upper aquifer, which is one of the three aquifer layers in the Lake Chad Basin. Since significant volumes of water are being extracted from the two lower aquifers by the local communities, more thorough and comprehensive analysis of the hydrological interactions in the lake system and the effects of climate and land-cover changes on the deeper aquifers are necessary for understanding the shrinkage of the lake. As a means of integrating the conditions and processes of land-surface and climate changes with those of the multi-layered aquifers, we will implement a composite computational modeling process based on three modeling components – a satellite data model, a climate data model, and a physically-based hydrologic model. WetSpass (Water and Energy Transfer between Soil, Plants and Atmosphere under quasi Steady State) and MODFLOW (a 3D Finite-Difference Modular Groundwater Flow Model) will be employed as the physically-based hydrologic models. WetSpass is a water balance-based model used to estimate spatially-varying groundwater recharge and surface runoff with consideration of soil properties, land use, topography, groundwater depth, and meteorological data [Batelaan and Smedt, 2007; Lee et al., 2009]. These input data sets required for WetSpass will be obtained from satellite data models. The ASTER 30-m and SRTM 90-m digital elevation data will be used to construct the topographic morphology, while the US Geological Survey’s 30 arc-second digital elevation model (GTOPO30) will provide topographically derived data sets including streams, drainage basins and ancillary layers. The MODIS 250-m land-cover products will provide the geospatial distribution of land covers for the NSSA region. The spatial distribution of soil properties will be constructed by using a digital soil map from the Food and Agriculture Organization. The GRACE (Gravity Recovery and Climate Experiment) satellite data and the GLDAS (Global Land Data Assimilation System) model will be employed to construct an initial groundwater elevation model for WetSpass. The outputs of WetSpass are spatial distributions of groundwater recharge and surface runoff, which will be used to update the initial groundwater elevation by using MODFLOW. The satellite data analysis and modeling of the groundwater elevations, recharge, and outflow will be calibrated and validated with field monitoring data currently being acquired by Lee and Adegoke through their on-going research projects funded separately by the US National Science Foundation (NSF) and the Nigerian National Space Research and Development Agency (NASRDA).
Recent climate simulation studies over the India/Indian Ocean region showed that dust and black carbon (largely from biomass burning) aerosols have the potential to modify the regional climate [e.g. Ramanathan et al., 2005]. An additional pathway to these simulated climate changes could be the feedbacks associated with land–atmosphere interactions that are ignored in aerosol climate studies. We will conduct regional climate model studies over the NSSA region to gain new insights on the coupling between aerosols and cloud properties (micro and macrophysical). A key focus will be mesoscale convection during the monsoon season due to differential heating resulting from both gradients in surface and Boundary Layer (BL) fluxes from surface landscape heterogeneity and to aerosol plumes resulting from the regional biomass burning activities. Specifically, we will utilize the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) and the mesoscale Weather Research and Forecast (WRF) model to conduct a range of experiments to test the sensitivity of changes in radiative feedback over the NSSA region. These modeling studies will incorporate configurations of the Noah land surface model, the Medium Range Forecast (MRF) model boundary layer scheme, and the Kain Fritsch cumulus parameterization. Following recent work conducted Adegoke et al. [2009] on the impacts of land surface heterogeneity on warm season precipitation and by Niyogi et al. [2007] on the sensitivity of monsoonal land–atmosphere interactions to radiative feedbacks in the Indian sub-region, we will conduct several simulations focusing on the NSSA region, that incorporate: (1) Rapid Radiative Transfer Model (RRTM) scheme for control; (2) Eta operational radiation scheme; (3) Prescribed increase in optical depth in the RRTM scheme. The simulations will provide insight on the effect of changes in the radiative scheme and on the impact of surface changes and increased aerosol loading (optical depth) due to biomass burning on BL processes, including the convectively available potential energy (CAPE). We will use the appropriate climate models, such as climRAMS [Liston and Pielke, 2000], to evaluate the long-term impacts of biomass burning on the regional climate by conducting multi-year regional climate model (RCM) integrations.
Aligeti, N. (2011). Satellite-based assessment of invasive vegetation in Lake Chad Basin, West Africa. University of Missouri - Kansas City. Retrieved from https://mospace.umsystem.edu/xmlui/handle/10355/12593
Babama’aji, R. A., and Lee, J. (2013). Land use/land cover classification of the vicinity of Lake Chad using NigeriaSat-1 and Landsat data. Environmental Earth Sciences, 71(10), 4309–4317. doi:10.1007/s12665-013-2825-x
Babama’aji, R. A. (2013). Impacts of Precipitation, Land Use Land Cover and Soil Type on the Water Balance of Lake Chad Basin. University of Missouri - Kansas City. Retrieved from https://mospace.umsystem.edu/xmlui/handle/10355/41500
Dezfuli, A. (2017). Climate of Western and Central Equatorial Africa. Oxford Research Encyclopedia of Climate Science, 1(November), 1–46. doi:10.1093/acrefore/9780190228620.013.511
Dezfuli, A. K., Ichoku, C. M., Huffman, G. J., Mohr, K. I., Selker, J. S., van de Giesen, N., … Annor, F. O. (2017). Validation of IMERG Precipitation in Africa. Journal of Hydrometeorology, 18(10), 2817–2825. doi:10.1175/JHM-D-17-0139.1
Engelbrecht, F., Adegoke, J., Bopape, M.-J., Naidoo, M., Garland, R., Thatcher, M., … Gatebe, C. (2015). Projections of rapidly rising surface temperatures over Africa under low mitigation. Environmental Research Letters, 10(8), 085004. doi:10.1088/1748-9326/10/8/085004
Gatebe, C. K., Ichoku, C. M., Poudyal, R., Román, M. O., and Wilcox, E. (2014). Surface albedo darkening from wildfires in northern sub-Saharan Africa. Environmental Research Letters, 9(6), 065003. doi:10.1088/1748-9326/9/6/065003
Hosseinpour, F., and Wilcox, E. M. (2014). Aerosol interactions with African/Atlantic climate dynamics. Environmental Research Letters, 9(7), 075004. doi:10.1088/1748-9326/9/7/075004
Ichoku, C., and Adegoke, J. (2016). Synthesis and review: African environmental processes and water-cycle dynamics. Environmental Research Letters, 11(12), 120206. doi:10.1088/1748-9326/11/12/120206
Ichoku, C., and Ellison, L. (2014). Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmospheric Chemistry and Physics, 14(13), 6643–6667. doi:10.5194/acp-14-6643-2014
Ichoku, C., Ellison, L. T., Willmot, K. E., Matsui, T., Dezfuli, A. K., Gatebe, C. K., … Habib, S. (2016). Biomass burning, land-cover change, and the hydrological cycle in Northern sub-Saharan Africa. Environmental Research Letters, 11(9), 095005. doi:10.1088/1748-9326/11/9/095005
Idowu, O. S. (2012). The role of land-atmosphere and aerosol interactions on meso-scale convective weather systems across West Africa. University of Missouri - Kansas City. Retrieved from https://mospace.umsystem.edu/xmlui/handle/10355/33201
Iguchi, T., Matsui, T., Tao, Z., Kim, D., Ichoku, C. M., Ellison, L., and Wang, J. (2018). NU-WRF Aerosol Transport Simulation over West Africa: Effects of Biomass Burning on Smoke Aerosol Distribution. Journal of Applied Meteorology and Climatology, 57(7), 1551–1573. doi:10.1175/JAMC-D-17-0278.1
Long, S., Fatoyinbo, T. E., and Policelli, F. (2014). Flood extent mapping for Namibia using change detection and thresholding with SAR. Environmental Research Letters, 9(3), 035002. doi:10.1088/1748-9326/9/3/035002
Okonkwo, C., and Demoz, B. (2014). Identifying anthropogenic ‘hotspots’ and management of water resources in Lake Chad Basin using GIS. Journal of Natural Resources Policy Research, 6(2–3), 135–149. doi:10.1080/19390459.2014.920581
Okonkwo, C., Demoz, B., and Gebremariam, S. (2014). Characteristics of Lake Chad Level Variability and Links to ENSO, Precipitation, and River Discharge. The Scientific World Journal, 2014. doi:10.1155/2014/145893
Okonkwo, C., Demoz, B., and Onyeukwu, K. (2013). Characteristics of drought indices and rainfall in Lake Chad Basin. International Journal of Remote Sensing, 34(22), 7945–7961. doi:10.1080/01431161.2013.827813
Okonkwo, C., Demoz, B., Sakai, R., Ichoku, C., Anarado, C., Adegoke, J., … Abdullahi, S. I. (2015). Combined effect of El Niño southern oscillation and Atlantic multidecadal oscillation on Lake Chad level variability. (N. Krakauer, Ed.)Cogent Geoscience, 1(1117829). doi:10.1080/23312041.2015.1117829
Park, C. (2012). VELAS: A fully-distributed daily hydrologic feedback model with emphasis on vegetation, land cover, and soil water dynamics. University of Missouri - Kansas City. Retrieved from https://mospace.umsystem.edu/xmlui/handle/10355/14671
Park, C., Lee, J., and Koo, M. H. (2013). Development of a fully-distributed daily hydrologic feedback model addressing vegetation, land cover, and soil water dynamics (VELAS). Journal of Hydrology, 493, 43–56. doi:10.1016/j.jhydrol.2013.04.027
Policelli, F., Hubbard, A., Jung, H., Zaitchik, B., and Ichoku, C. (2018). Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data. Remote Sensing, 10(2), 252. doi:10.3390/rs10020252
Skaskevych, A. (2014). A Comparison Study of GRACE-Based Groundwater Modeling for Data-Rich and Data-Scarce Regions. University of Missouri - Kansas City. Retrieved from https://mospace.umsystem.edu/xmlui/handle/10355/43918
Tobar, I. M. (2012). Geostatistical analysis of land use/land cover changes and population growth trends in the Komadugu-Yobe River Basin in Nigeria. University of Missouri - Kansas City. Retrieved from https://mospace.umsystem.edu/xmlui/handle/10355/14664
Wang, J., Yue, Y., Wang, Y., Ichoku, C., Ellison, L., and Zeng, J. (2018). Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region. Journal of Geophysical Research: Atmospheres, 123(1), 507–528. doi:10.1002/2017JD026840
Yang, Z. (2013). Mesoscale Modeling and Satellite Observation of Transport and Mixing of Smoke and Dust Particles over Northern Sub-Saharan African Region. University of Nebraska - Lincoln. Retrieved from http://digitalcommons.unl.edu/geoscidiss/43/
Yang, Z., Wang, J., Ichoku, C., Hyer, E., and Zeng, J. (2013). Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub-Saharan African region. Journal of Geophysical Research: Atmospheres, 118(21), 12139–12157. doi:10.1002/2013JD020644
Zhang, F., Wang, J., Ichoku, C., Hyer, E. J., Yang, Z., Ge, C., … da Silva, A. (2014). Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: a case study in northern sub-Saharan African region. Environmental Research Letters, 9(7), 075002. doi:10.1088/1748-9326/9/7/075002
Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U. (1998). Modal Aerosol Dynamics model for Europe: Development and first applications. Atmospheric Environment, 32(17), 2981–2999. doi:10.1016/S1352-2310(98)00006-5
Adeel, Z., Safriel, U., Niemeijer, D., White, R., de Kalbermatten, G., Glantz, M., … Yapi-Gnaore, V. (2005). Ecosystems and Human Well-being: Desertification Synthesis. (J. Sarukhán, A. Whyte, and MA Board of Review Editors, Eds.). Washington, DC: World Resources Institute.
Adegoke, J. O., Pielke, R. A., Eastman, J., Mahmood, R., and Hubbard, K. G. (2003). Impact of Irrigation on Midsummer Surface Fluxes and Temperature under Dry Synoptic Conditions: A Regional Atmospheric Model Study of the U.S. High Plains. Monthly Weather Review, 131(3), 556–564. doi:10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., … Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. doi:10.5194/acp-11-4039-2011
Al-Hamdan, M. Z., Oduor, P., Flores, A. I., Kotikot, S. M., Mugo, R., Ababu, J., and Farah, H. (2017). Evaluating land cover changes in Eastern and Southern Africa from 2000 to 2010 using validated Landsat and MODIS data. International Journal of Applied Earth Observation and Geoinformation, 62(April), 8–26. doi:10.1016/j.jag.2017.04.007
Andela, N., and van der Werf, G. R. (2014). Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Climate Change, 4(9), 791–795. doi:10.1038/nclimate2313
Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E. (1976). A Land Use and Land Cover Classification System for Use with Remote Sensor Data. Retrieved from http://pubs.er.usgs.gov/publication/pp964
Andreae, M. O., and Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966. doi:10.1029/2000GB001382
Andres, R. J., Boden, T. A., Bréon, F. M., Ciais, P., Davis, S., Erickson, D., … Treanton, K. (2012). A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences, 9, 1845–1871. doi:10.5194/bg-9-1845-2012
Barbosa, P. M., Stroppiana, D., Grégoire, J. M., and Pereira, J. M. C. (1999). An assessment of vegetation fire in Africa (1981-1991): Burned areas, burned biomass, and atmospheric emissions. Global Biogeochemical Cycles, 13(4), 933–950. doi:10.1029/1999GB900042
Bdliya, H. H., and Bloxom, M. (2007). Transboundary Diagnostic Analysis of the Lake Chad Basin. Retrieved from http://lakechad.iwlearn.org/publications/reports/
Beilfuss, R. (2012). A Risky Climate for Southern African Hydro: Assessing hydrological risks and consequences for Zambezi River Basin dams. Berkeley, CA, USA: International Rivers. Retrieved from http://www.internationalrivers.org/resources/a-risky-climate-for-southern-african-hydro-7673
Biasutti, M., and Giannini, A. (2006). Robust Sahel drying in response to late 20th century forcings. Geophysical Research Letters, 33(11), L11706. doi:10.1029/2006GL026067
Biggin, D. S., and Blyth, K. (1996). A Comparison of ERS-1 Satellite Radar and Aerial Photography for River Flood Mapping. Water and Environment Journal, 10(1), 59–64. doi:10.1111/j.1747-6593.1996.tb00009.x
Birkett, C. M. (2000). Synergistic Remote Sensing of Lake Chad: Variability of Basin Inundation. Remote Sensing of Environment, 72(2), 218–236. doi:10.1016/S0034-4257(99)00105-4
Bjerknes, J. (1969). Atmospheric Teleconnections From the Equatorial Pacific. Monthly Weather Review, 97(3), 163–172. doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380–5552. doi:10.1002/jgrd.50171
Boronina, A., and Ramillien, G. (2008). Application of AVHRR imagery and GRACE measurements for calculation of actual evapotranspiration over the Quaternary aquifer (Lake Chad basin) and validation of groundwater models. Journal of Hydrology, 348(1–2), 98–109. doi:10.1016/j.jhydrol.2007.09.061
Burpee, R. W. (1972). The Origin and Structure of Easterly Waves in the Lower Troposphere of North Africa. Journal of the Atmospheric Sciences, 29(1), 77–90. doi:10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2
Burpee, R. W. (1974). Characteristics of North African Easterly Waves During the Summers of 1968 and 1969. Journal of the Atmospheric Sciences, 31(6), 1556–1570. doi:10.1175/1520-0469(1974)031<1556:CONAEW>2.0.CO;2
Cahoon, D. R. J., Stocks, B. J., Levine, J. S., Cofer, W. R. I., and O’Neill, K. P. (1992). Seasonal distribution of African savanna fires. Nature, 356, 133–135. doi:10.1038/359812a0
Cahoon, D. R. J., Stocks, B. J., Levine, J. S., Cofer, W. R. I., and Pierson, J. M. (1994). Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. Journal of Geophysical Research: Atmospheres, 99(D9), 18627–18638. doi:10.1029/94JD01024
Caminade, C., and Terray, L. (2010). Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Climate Dynamics, 35(1), 75–94. doi:10.1007/s00382-009-0545-4
Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., … Pierce, J. R. (2013). Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67–71. doi:10.1038/nature12674
Chang, E. K. M. (1993). Downstream Development of Baroclinic Waves As Inferred from Regression Analysis. Journal of the Atmospheric Sciences, 50(13), 2038–2053. doi:10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2
Charney, J. G. (1975). Dynamics of deserts and drought in the Sahel. Quarterly Journal of the Royal Meteorological Society, 101(428), 193–202. doi:10.1002/qj.49710142802
Charney, J. G., and Stern, M. E. (1962). On the Stability of Internal Baroclinic Jets in a Rotating Atmosphere. Journal of the Atmospheric Sciences, 19(2), 159–172. doi:10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2
Chen, T.-C., and van Loon, H. (1987). Interannual Variation of the Tropical Easterly Jet. Monthly Weather Review, 115(8), 1739–1759. doi:10.1175/1520-0493(1987)115<1739:IVOTTE>2.0.CO;2
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., … Nakajima, T. (2002). Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Journal of the Atmospheric Sciences, 59(3), 461–483. doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
Chou, M.-D., Suarez, M. J., Ho, C.-H., Yan, M. M.-H., and Lee, K.-T. (1998). Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. Journal of Climate, 11(2), 202–214. doi:10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2
Coe, M. T., and Foley, J. A. (2001). Human and natural impacts on the water resources of the Lake Chad basin. Journal of Geophysical Research, 106(D4), 3349. doi:10.1029/2000JD900587
Coe, M. T., and Birkett, C. M. (2004). Calculation of river discharge and prediction of lake height from satellite radar altimetry: Example for the Lake Chad basin. Water Resources Research, 40(10). doi:10.1029/2003WR002543
Cook, K. H. (2008). Climate science: The mysteries of Sahel droughts. Nature Geoscience, 1, 647–648. doi:10.1038/ngeo320
Cornforth, R. J., Hoskins, B. J., and Thorncroft, C. D. (2009). The impact of moist processes on the African easterly jet–African easterly wave system. Quarterly Journal of the Royal …, 135(641), 894–913. doi:10.1002/qj.414
Crutzen, P. J., and Andreae, M. O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science, 250(4988), 1669–1678. doi:10.1126/science.250.4988.1669
Dembélé, M., and Zwart, S. J. (2016). Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. International Journal of Remote Sensing, 37(17), 3995–4014. doi:10.1080/01431161.2016.1207258
Deshmukh, K. S., and Shinde, G. N. (2005). An Adaptive Color Image Segmentation. Electronic Letters on Computer Vision and Image Analysis, 5(4), 12–23. doi:10.5565/rev/elcvia.115
Diaz, M., and Aiyyer, A. (2013). Energy Dispersion in African Easterly Waves. Journal of the Atmospheric Sciences, 70(1), 130–145. doi:10.1175/JAS-D-12-019.1
Diehl, T., Heil, A., Chin, M., Pan, X., Streets, D., Schultz, M., and Kinne, S. (2012). Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmospheric Chemistry and Physics Discussions, 12, 24895–24954. doi:10.5194/acpd-12-24895-2012
Dozier, J. (1981). A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing of Environment, 11, 221–229. doi:10.1016/0034-4257(81)90021-3
Dunion, J. P., and Marron, C. S. (2008). A Reexamination of the Jordan Mean Tropical Sounding Based on Awareness of the Saharan Air Layer: Results from 2002. Journal of Climate, 21(20), 5242–5253. doi:10.1175/2008JCLI1868.1
Ehrlich, D., Lambin, E. F., and Malingreau, J. (1997). Biomass burning and broad-scale land-cover changes in Western Africa. Remote Sensing of Environment, 61(2), 201–209. doi:10.1016/S0034-4257(97)00002-3
Eisenhauer, J. G. (2003). Regression through the Origin. Teaching Statistics, 25(3), 76–80. doi:10.1111/1467-9639.00136
Eltahir, E. A. B. (1996). El Niño and the Natural Variability in the Flow of the Nile River. Water Resources Research, 32(1), 131–137. doi:10.1029/95WR02968
Eriksen, C. (2007). Why do they burn the ‘bush’? Fire, rural livelihoods, and conservation in Zambia. The Geographical Journal, 173(3), 242–256. doi:10.1111/j.1475-4959.2007.00239.x
Estes, L. D., Chaney, N. W., Herrera-Estrada, J., Sheffield, J., Caylor, K. K., and Wood, E. F. (2014). Changing water availability during the African maize-growing season, 1979–2010. Environmental Research Letters, 9(7), 075005. doi:10.1088/1748-9326/9/7/075005
Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., … Peckham, S. E. (2006). Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. Journal of Geophysical Research: Atmospheres, 111(D21). doi:10.1029/2005JD006721
Feingold, G., Jiang, H., and Harrington, J. Y. (2005). On smoke suppression of clouds in Amazonia. Geophysical Research Letters, 32(2). doi:10.1029/2004GL021369
Fontaine, B., Roucou, P., Gaetani, M., and Marteau, R. (2011). Recent changes in precipitation, ITCZ convection and northern tropical circulation over North Africa (1979-2007). International Journal of Climatology, 31(5), 633–648. doi:10.1002/joc.2108
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., … van Dorland, R. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In T. Nakajima and V. Ramanathan (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 129–234). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:39002468
Frank, N. L. (1969). The ’ “inverted V”’cloud pattern—An easterly wave. Monthly Weather Review, 97(2), 130–140. doi:10.1175/1520-0493(1969)097<0130:TVCPEW>2.3.CO;2
Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. a., Nordgren, B. L., Baker, S. P., and Ichoku, C. (2008). Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires. Journal of Geophysical Research, 113(D1), D01301. doi:10.1029/2007JD008679
Freitas, S. R., Longo, K. M., and Andreae, M. O. (2006). Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants. Geophysical Research Letters, 33(17). doi:10.1029/2006GL026608
Fu, J. S., Hsu, N. C., Gao, Y., Huang, K., Li, C., Lin, N. H., and Tsay, S. C. (2012). Evaluating the influences of biomass burning during 2006 BASE-ASIA: A regional chemical transport modeling. Atmospheric Chemistry and Physics, 12, 3837–3855. doi:10.5194/acp-12-3837-2012
Fuller, D. O., and Ottke, C. (2002). Land cover, rainfall and land-surface albedo in West Africa. Climatic Change, 54, 181–204. doi:10.1023/A:1015730900622
Furley, P. A., Rees, R. M., Ryan, C. M., and Saiz, G. (2008). Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Progress in Physical Geography, 32(6), 611–634. doi:10.1177/0309133308101383
Gao, F., Morisette, J. T., Wolfe, R. E., Ederer, G., Pedelty, J., Masuoka, E., … Nightingale, J. (2008). An algorithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geoscience and Remote Sensing Letters, 5(1), 60–64. doi:10.1109/LGRS.2007.907971
Gao, H., Bohn, T. J., Podest, E., McDonald, K. C., and Lettenmaier, D. P. (2011). On the causes of the shrinking of Lake Chad. Environmental Research Letters, 6(3). doi:10.1088/1748-9326/6/3/034021
Gatebe, C. K., and King, M. D. (2016). Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications. Remote Sensing of Environment, 179, 131–148. doi:10.1016/j.rse.2016.03.029
Gatebe, C. K., King, M. D., Platnick, S., Arnold, G. T., Vermote, E. F., and Schmid, B. (2002). Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa. Journal of Geophysical Research: Atmospheres, 108(D13). doi:10.1029/2002JD002397
Ge, C., Wang, J., and Reid, J. S. (2014). Mesoscale modeling of smoke transport over the Southeast Asian maritime continent: Coupling of smoke direct radiative effect below and above the low-level clouds. Atmospheric Chemistry and Physics, 14, 159–174. doi:10.5194/acp-14-159-2014
Geerken, R., Vassolo, S., and Bila, M. (2010). Impacts of climate variability and population pressure on water resources in the Lake Chad Basin. In Conference of the Global Catchment Initiative (pp. 27–33). Retrieved from http://www.bgr.bund.de/EN/Themen/Wasser/Projekte/laufend/TZ/Tschad/geerken&vassolo.pdf?__blob=publicationFile&v=1
Generoso, S., Bey, I., Attié, J.-L., and Bréon, F.-M. (2007). A satellite- and model-based assessment of the 2003 Russian fires: Impact on the Arctic region. Journal of Geophysical Research: Atmospheres, 112(D15). doi:10.1029/2006JD008344
Giannini, A., Saravanan, R., and Chang, P. (2003). Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal Time Scales. Science, 302(5647), 1027–1030. doi:10.1126/science.1089357
Giannini, A., Biasutti, M., and Verstraete, M. M. (2008). A climate model-based review of drought in the Sahel: Desertification, the re-greening and climate change. Global and Planetary Change, 64(3–4), 119–128. doi:10.1016/j.gloplacha.2008.05.004
Giglio, L. (2007). Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sensing of Environment, 108(4), 407–421. doi:10.1016/j.rse.2006.11.018
Giglio, L. (2013). MODIS Collection 5 Active Fire Product User’s Guide (2.5.). Retrieved from http://modis-fire.umd.edu/files/MODIS_Fire_Users_Guide_2.5.pdf
Giglio, L., Csiszar, I., Restás, Á., Morisette, J. T., Schroeder, W., Morton, D., and Justice, C. O. (2008). Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sensing of Environment, 112(6), 3055–3063. doi:10.1016/j.rse.2008.03.003
Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J. (2003). An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment, 87(2–3), 273–282. doi:10.1016/S0034-4257(03)00184-6
Giglio, L., Schroeder, W., and Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. doi:10.1016/j.rse.2016.02.054
Good, P., Harper, A., Meesters, A., Robertson, E., and Betts, R. (2016). Are strong fire–vegetation feedbacks needed to explain the spatial distribution of tropical tree cover? Global Ecology and Biogeography, 25(1), 16–25. doi:10.1111/geb.12380
Görgen, K., Lynch, A. H., Marshall, A. G., and Beringer, J. (2006). Impact of abrupt land cover changes by savanna fire on northern Australian climate. Journal of Geophysical Research: Atmospheres, 111(D19). doi:10.1029/2005JD006860
Govaerts, Y. M., Pereira, J. M., Pinty, B., and Mota, B. (2002). Impact of fires on surface albedo dynamics over the African continent. Journal of Geophysical Research: Atmospheres, 107(D22). doi:10.1029/2002JD002388
Govaerts, Y., and Lattanzio, A. (2008). Estimation of surface albedo increase during the eighties Sahel drought from Meteosat observations. Global and Planetary Change, 64(3–4), 139–145. doi:10.1016/j.gloplacha.2008.04.004
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), 6957–6975. doi:10.1016/j.atmosenv.2005.04.027
Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561–566. doi:10.5194/npg-11-561-2004
Grist, J. P., and Nicholson, S. E. (2001). A Study of the Dynamic Factors Influencing the Rainfall Variability in the West African Sahel. Journal of Climate, 14(7), 1337–1359. doi:10.1175/1520-0442(2001)014<1337:ASOTDF>2.0.CO;2
Gu, G., Adler, R. F., Huffman, G. J., and Curtis, S. (2004). African easterly waves and their association with precipitation. Journal of Geophysical Research, 109(D4). doi:10.1029/2003JD003967
Hagos, S. M., and Cook, K. H. (2008). Ocean Warming and Late-Twentieth-Century Sahel Drought and Recovery. Journal of Climate, 21(15), 3797–3814. doi:10.1175/2008JCLI2055.1
Hall, N. M. J., Kiladis, G. N., and Thorncroft, C. D. (2006). Three-Dimensional Structure and Dynamics of African Easterly Waves. Part II: Dynamical Modes. Journal of the Atmospheric Sciences, 63(9), 2231–2245. doi:10.1175/JAS3742.1
Hao, W. M., and Liu, M.-H. (1994). Spatial and temporal distribution of tropical biomass burning. Global Biogeochemical Cycles, 8(4), 495–503. doi:10.1029/94GB02086
Held, I. M., Delworth, T. L., Lu, J., Findell, K. L., and Knutson, T. R. (2005). Simulation of Sahel drought in the 20th and 21st centuries. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 17891–6. doi:10.1073/pnas.0509057102
Henderson, S. B., Burkholder, B., Jackson, P. L., Brauer, M., and Ichoku, C. (2008). Use of MODIS products to simplify and evaluate a forest fire plume dispersion model for PM10 exposure assessment. Atmospheric Environment, 42(36), 8524–8532. doi:10.1016/j.atmosenv.2008.05.008
Henderson, S. B., Ichoku, C., Burkholder, B. J., Brauer, M., and Jackson, P. L. (2010). The validity and utility of MODIS data for simple estimation of area burned and aerosols emitted by wildfire events. International Journal of Wildland Fire, 19(7), 844. doi:10.1071/WF09027
Henry, J. ‐B., Chastanet, P., Fellah, K., and Desnos, Y. ‐L. (2006). Envisat multi‐polarized ASAR data for flood mapping. International Journal of Remote Sensing, 27(10), 1921–1929. doi:10.1080/01431160500486724
Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., Granier, C., and Simon, M. (2004). Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. Journal of Geophysical Research: Atmospheres, 109(D14). doi:10.1029/2003JD003666
Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., … Zibordi, G. (2001). An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research: Atmospheres, 106(D11), 12067–12097. doi:10.1029/2001JD900014
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., … Smirnov, A. (1998). AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sensing of Environment, 66(1). doi:10.1016/S0034-4257(98)00031-5
Horritt, M. S., Mason, D. C., and Luckman, A. J. (2001). Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model. International Journal of Remote Sensing, 22(13), 2489–2507. doi:10.1080/01431160116902
Hsieh, J.-S., and Cook, K. H. (2005). Generation of African Easterly Wave Disturbances: Relationship to the African Easterly Jet. Monthly Weather Review, 133(5), 1311–1327. doi:10.1175/MWR2916.1
Hsu, N. C., Gautam, R., Sayer, A. M., Bettenhausen, C., Li, C., Jeong, M. J., … Holben, B. N. (2012). Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmospheric Chemistry and Physics, 12, 8037–8053. doi:10.5194/acp-12-8037-2012
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., … Wolff, D. B. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8(1), 38–55. doi:10.1175/JHM560.1
Hwang, C., Peng, M.-F., Ning, J., Luo, J., and Sui, C.-H. (2005). Lake level variations in China from TOPEX/Poseidon altimetry: data quality assessment and links to precipitation and ENSO. Geophysical Journal International, 161(1), 1–11. doi:10.1111/j.1365-246X.2005.02518.x
Hyer, E., Wang, J., and Arellano, A. (2012). Biomass Burning: Observations, Modeling, and Data Assimilation. Bulletin of the American Meteorological Society, 93(1), ES10-ES14. doi:10.1175/BAMS-D-11-00064.1
Ichoku, C. (2003). MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000. Journal of Geophysical Research, 108(D13), 8499. doi:10.1029/2002JD002366
Ichoku, C. (2005). Quantitative evaluation and intercomparison of morning and afternoon Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol measurements from Terra and Aqua. Journal of Geophysical Research, 110(D10), D10S03. doi:10.1029/2004JD004987
Ichoku, C., Giglio, L., Wooster, M. J., and Remer, L. A. (2008). Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, 112(6), 2950–2962. doi:10.1016/j.rse.2008.02.009
Ichoku, C., Kahn, R., and Chin, M. (2012). Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmospheric Research, 111, 1–28. doi:10.1016/j.atmosres.2012.03.007
Ichoku, C., and Kaufman, Y. J. (2005). A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2636–2649. doi:10.1109/TGRS.2005.857328
Ichoku, C., Martins, J. V., Kaufman, Y. J., Wooster, M. J., Freeborn, P. H., Hao, W. M., … Nordgren, B. L. (2008). Laboratory investigation of fire radiative energy and smoke aerosol emissions. Journal of Geophysical Research, 113(D14), D14S09. doi:10.1029/2007JD009659
Inglacla, J., and Mercier, G. (2007). A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1432–1445. doi:10.1109/TGRS.2007.893568
Isiorho, S. A., Matisoff, G., and Wehn, K. S. (1996). Seepage Relationship Between Lake Chad and the Chad Aquifers. Groundwater, 34(5), 819–826. doi:10.1111/j.1745-6584.1996.tb02076.x
Ito, A., and Penner, J. E. (2004). Global estimates of biomass burning emissions based on satellite imagery for the year 2000. Journal of Geophysical Research: Atmospheres, 109(D14). doi:10.1029/2003JD004423
Janicot, S. (1997). Impact of warm ENSO events on atmospheric circulation and convection over the tropical Atlantic and West Africa. Annales Geophysicae, 15, 471–475. doi:10.1007/s00585-997-0471-x
Jenkins, G. S., Gaye, A. T., and Sylla, B. (2005). Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3). Geophysical Research Letters, 32(22). doi:10.1029/2005GL024225
Jin, Y., and Roy, D. P. (2005). Fire-induced albedo change and its radiative forcing at the surface in northern Australia. Geophysical Research Letters, 32(13). doi:10.1029/2005GL022822
Johnson, B. T., Heese, B., McFarlane, S. a., Chazette, P., Jones, A., and Bellouin, N. (2008). Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX. Journal of Geophysical Research, 113, D00C12. doi:10.1029/2008JD009848
Johnson, B. T., Osborne, S. R., Haywood, J. M., and Harrison, M. A. J. (2008). Aircraft measurements of biomass burning aerosol over West Africa during DABEX. Journal of Geophysical Research: Atmospheres, 113(D23). doi:10.1029/2007JD009451
Joly, M., Voldoire, A., Douville, H., Terray, P., and Royer, J. F. (2007). African monsoon teleconnections with tropical SSTs: Validation and evolution in a set of IPCC4 simulations. Climate Dynamics, 29(1), 1–20. doi:10.1007/s00382-006-0215-8
Jones, C., Mahowald, N., and Luo, C. (2004). Observational evidence of African desert dust intensification of easterly waves. Geophysical Research Letters, 31(17). doi:10.1029/2004GL020107
Jones, C., Mahowald, N., and Luo, C. (2003). The Role of Easterly Waves on African Desert Dust Transport. Journal of Climate, 16(22), 3617–3628. doi:10.1175/1520-0442(2003)016<3617:TROEWO>2.0.CO;2
Jordan, N. S., Ichoku, C., and Hoff, R. M. (2008). Estimating smoke emissions over the US Southern Great Plains using MODIS fire radiative power and aerosol observations. Atmospheric Environment, 42(9), 2007–2022. doi:10.1016/j.atmosenv.2007.12.023
Jury, M. R., and Santiago, M. J. (2010). Composite analysis of dust impacts on African easterly waves in the Moderate Resolution Imaging Spectrometer era. Journal of Geophysical Research: Atmospheres, 115(D16). doi:10.1029/2009JD013612
Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., … Kaufman, Y. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1–2), 244–262. doi:10.1016/S0034-4257(02)00076-7
Kahn, R. A., Li, W.-H., Moroney, C., Diner, D. J., Martonchik, J. V., and Fishbein, E. (2007). Aerosol source plume physical characteristics from space-based multiangle imaging. Journal of Geophysical Research, 112(D11), D11205. doi:10.1029/2006JD007647
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., … van der Werf, G. R. (2012). Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), 527–554. doi:10.5194/bg-9-527-2012
Karyampudi, V. M., Palm, S. P., Reagen, J. A., Fang, H., Grant, W. B., Hoff, R. M., … Melfi, S. H. (1999). Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bulletin of the American Meteorological Society, 80(6), 1045–1075. doi:10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2
Kaufman, Y. J. (2005). Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical Research, 110(D10), D10S12. doi:10.1029/2003JD004436
Kaufman, Y. J., Koren, I., Remer, L. a, Rosenfeld, D., and Rudich, Y. (2005). The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11207–12. doi:10.1073/pnas.0505191102
Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., … Setzer, A. W. (1998). Potential global fire monitoring from EOS-MODIS. Journal of Geophysical Research, 103(D24), 32215–32238. doi:10.1029/98JD01644
Kiladis, G. N., Thorncroft, C. D., and Hall, N. M. J. (2006). Three-Dimensional Structure and Dynamics of African Easterly Waves. Part I: Observations. Journal of the Atmospheric Sciences, 63(9), 2231–2245. doi:10.1175/JAS3741.1
Kim, K. M., Lau, W. K.-M., Sud, Y. C., and Walker, G. K. (2010). Influence of aerosol-radiative forcings on the diurnal and seasonal cycles of rainfall over West Africa and Eastern Atlantic Ocean using GCM simulations. Climate Dynamics, 35(1), 115–126. doi:10.1007/s00382-010-0750-1
Konare, A., Zakey, A. S., Solmon, F., Giorgi, F., Rauscher, S., Ibrah, S., and Bi, X. (2008). A regional climate modeling study of the effect of desert dust on the West African monsoon. Journal of Geophysical Research, 113(D12). doi:10.1029/2007JD009322
Küçük, M., Kahya, E., Cengiz, T. M., and Karaca, M. (2009). North Atlantic Oscillation influences on Turkish lake levels. Hydrological Processes, 23(6), 893–906. doi:10.1002/hyp.7225
Kussul, N., Shelestov, A., and Skakun, S. (2008). Grid system for flood extent extraction from satellite images. Earth Science Informatics, 1(3–4), 105–117. doi:10.1007/s12145-008-0014-3
Labat, D. (2010). Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. Journal of Hydrology, 385(1–4), 269–278. doi:10.1016/j.jhydrol.2010.02.029
Landsea, C. W., Bell, G. D., Gray, W. M., and Goldenberg, S. B. (1998). The Extremely Active 1995 Atlantic Hurricane Season: Environmental Conditions and Verification of Seasonal Forecasts. Monthly Weather Review, 126(5), 1174–1193. doi:10.1175/1520-0493(1998)126<1174:TEAAHS>2.0.CO;2
Langmann, B., Duncan, B., Textor, C., Trentmann, J., and van der Werf, G. R. (2009). Vegetation fire emissions and their impact on air pollution and climate. Atmospheric Environment, 43(1), 107–116. doi:10.1016/j.atmosenv.2008.09.047
Langner, A., Miettinen, J., and Siegert, F. (2007). Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biology, 13(11), 2329–2340. doi:10.1111/j.1365-2486.2007.01442.x
Lare, A. R., and Nicholson, S. E. (1994). Contrasting conditions of surface water balance in wet years and dry years as a possible land surface-atmosphere feedback mechanism in the West African Sahel. Journal of Climate, 7(5), 653–668. doi:10.1175/1520-0442(1994)007<0653:CCOSWB>2.0.CO;2
Laris, P. S. (2005). Spatiotemporal problems with detecting and mapping mosaic fire regimes with coarse-resolution satellite data in savanna environments. Remote Sensing of Environment, 99(4), 412–424. doi:10.1016/j.rse.2005.09.012
Lau, K. M., Kim, K. M., Sud, Y. C., and Walker, G. K. (2009). A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Annales Geophysicae, 27(10), 4023–4037. doi:10.5194/angeo-27-4023-2009
Lavoué, D., Liousse, C., Cachier, H., Stocks, B. J., and Goldammer, J. G. (2000). Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. Journal of Geophysical Research, 105(D22), 26871–26890. doi:10.1029/2000JD900180
Le Houérou, H. N. (1996). Climate change, drought and desertification. Journal of Arid Environments, 34(2), 133–185. doi:10.1006/jare.1996.0099
Leblanc, M., Lemoalle, J., Bader, J.-C., Tweed, S., and Mofor, L. (2011). Thermal remote sensing of water under flooded vegetation: New observations of inundation patterns for the “Small” Lake Chad. Journal of Hydrology, 404(1–2), 87–98. doi:10.1016/j.jhydrol.2011.04.023
Lee, H., Jeong, S.-J., Kalashnikova, O., Tosca, M., Kim, S.-W., and Kug, J.-S. (2018). Characterization of Wildfire-Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products. Journal of Geophysical Research: Atmospheres, 123(6), 3116–3125. doi:10.1002/2017JD027415
Legates, D. R., and Willmott, C. J. (1990). Mean seasonal and spatial variability in global surface air temperature. Theoretical and Applied Climatology, 41(1–2), 11–21. doi:10.1007/BF00866198
Legates, D. R., and Willmott, C. J. (1990). Mean seasonal and spatial variability in gauge-corrected, global precipitation. International Journal of Climatology, 10(2), 111–127. doi:10.1002/joc.3370100202
Lemoalle, J., Bader, J. C., Leblanc, M., and Sedick, A. (2012). Recent changes in Lake Chad: Observations, simulations and management options (1973-2011). Global and Planetary Change, 80–81, 247–254. doi:10.1016/j.gloplacha.2011.07.004
Levy, R. C., Remer, L. a., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21), 10399–10420. doi:10.5194/acp-10-10399-2010
Li, F., Lawrence, D. M., and Bond-Lamberty, B. (2017). Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environmental Research Letters, 12(6), 069501. doi:10.1088/1748-9326/aa727f
Li, K. Y., Coe, M. T., Ramankutty, N., and De Jong, R. (2007). Modeling the hydrological impact of land-use change in West Africa. Journal of Hydrology, 337(3–4), 258–268. doi:10.1016/j.jhydrol.2007.01.038
Liousse, C., Assamoi, E., Criqui, P., Granier, C., and Rosset, R. (2014). Explosive growth in African combustion emissions from 2005 to 2030. Environmental Research Letters, 9(3), 035003. doi:10.1088/1748-9326/9/3/035003
Liousse, C., Guillaume, B., Grégoire, J. M., Mallet, M., Galy, C., Pont, V., … Van Velthoven, P. (2010). Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols. Atmospheric Chemistry and Physics, 10(19), 9631–9646. doi:10.5194/acp-10-9631-2010
Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Eddleman, H., and Cachier, H. (1996). A global three-dimensional model study of carbonaceous aerosols. Journal of Geophysical Research: Atmospheres, 101(D14), 19411–19432. doi:10.1029/95JD03426
Livingston, J. M., Redemann, J., Shinozuka, Y., Johnson, R., Russell, P. B., Zhang, Q., … Ramachandran, S. (2014). Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008. Atmospheric Chemistry and Physics, 14, 2015–2038. doi:10.5194/acp-14-2015-2014
Lopes, A., Nezry, E., Touzi, R., and Laur, H. (1990). Maximum A Posteriori Speckle Filtering and First Order Texture Models in SAR Images. In 10th Annual International Geoscience and Remote Sensing Symposium (pp. 2409–2412). IEEE. doi:10.1109/IGARSS.1990.689026
Losada, T., Rodriguez-Fonseca, B., Mohino, E., Bader, J., Janicot, S., and Mechoso, C. R. (2012). Tropical SST and Sahel rainfall: A non-stationary relationship. Geophysical Research Letters, 39(12). doi:10.1029/2012GL052423
Ma, P.-L., Zhang, K., Shi, J. J., Matsui, T., and Arking, A. (2012). Direct radiative effect of mineral dust on the development of African easterly waves in late summer, 2003-07. Journal of Applied Meteorology and Climatology, 51(12), 2090–2104. doi:10.1175/JAMC-D-11-0215.1
Mahowald, N. M., and Kiehl, L. M. (2003). Mineral aerosol and cloud interactions. Geophysical Research Letters, 30(9). doi:10.1029/2002GL016762
Martinis, S., Twele, A., and Voigt, S. (2009). Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Natural Hazards and Earth System Sciences, 9, 303–314. doi:10.5194/nhess-9-303-2009
Mason, D. C., Davenport, I. J., Neal, J. C., Schumann, G. J.-P., and Bates, P. D. (2012). Near Real-Time Flood Detection in Urban and Rural Areas Using High-Resolution Synthetic Aperture Radar Images. IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3041–3052. doi:10.1109/TGRS.2011.2178030
Mataveli, G. A. V., Silva, M. E. S., Pereira, G., da Silva Cardozo, F., Kawakubo, F. S., Bertani, G., … da Silva, V. V. (2018). Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas. Natural Hazards and Earth System Sciences, 18(1), 125–144. doi:10.5194/nhess-18-125-2018
Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., and Savenije, H. H. G. (2011). Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Physics and Chemistry of the Earth, 36(7–8), 241–252. doi:10.1016/j.pce.2010.12.009
Mazvimavi, D., and Wolski, P. (2006). Long-term variations of annual flows of the Okavango and Zambezi Rivers. Physics and Chemistry of the Earth, 31(15–16), 944–951. doi:10.1016/j.pce.2006.08.016
Mercier, F., Cazenave, A., and Maheu, C. (2002). Interannual lake level fluctuations (1993-1999) in Africa from Topex/Poseidon: connections with ocean-atmosphere interactions over the Indian Ocean. Global and Planetary Change, 32(2–3), 141–163. doi:10.1016/S0921-8181(01)00139-4
Michel, C., Liousse, C., Grégoire, J.-M., Tansey, K., Carmichael, G. R., and Woo, J.-H. (2005). Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns. Journal of Geophysical Research: Atmospheres, 110(D9). doi:10.1029/2004JD005461
Miller, R. L., and Tegen, I. (1998). Climate Response to Soil Dust Aerosols. Journal of Climate, 11(12), 3247–3267. doi:10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2
Ming, Y., and Ramaswamy, V. (2011). A Model Investigation of Aerosol-Induced Changes in Tropical Circulation. Journal of Climate, 24(19), 5125–5133. doi:10.1175/2011JCLI4108.1
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102(D14), 16663–16682. doi:10.1029/97JD00237
Moore, A. E., Cotterill, F. P. D. (Woody), Main, M. P. L., and Williams, H. B. (2008). The Zambezi River. In Large Rivers: Geomorphology and Management (pp. 311–332). doi:10.1002/9780470723722.ch15
Morisette, J. T., Giglio, L., Csiszar, I., and Justice, C. O. (2005). Validation of the MODIS active fire product over Southern Africa with ASTER data. International Journal of Remote Sensing, 26(19), 4239–4264. doi:10.1080/01431160500113526
Morisette, J. T., Giglio, L., Csiszar, I., Setzer, A., Schroeder, W., Morton, D., and Justice, C. O. (2005). Validation of MODIS Active Fire Detection Products Derived from Two Algorithms. Earth Interactions, 9(9), 1–25. doi:10.1175/EI141.1
Moron, V., and Ward, M. N. (1998). ENSO teleconnections with climate variability in the European and African sectors. Weather, 53(9), 287–295. doi:10.1002/j.1477-8696.1998.tb06403.x
Nelson, D. L., Chen, Y., Kahn, R. A., Diner, D. J., and Mazzoni, D. (2008). Example applications of the MISR INteractive eXplorer (MINX) software tool to wildfire smoke plume analyses. In W. M. Hao (Ed.), Proc. SPIE 7089, Remote Sensing of Fire: Science and Application (p. 708909). doi:10.1117/12.795087
Nelson, D., Garay, M., Kahn, R., and Dunst, B. (2013). Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX). Remote Sensing, 5(9), 4593–4628. doi:10.3390/rs5094593
Nicholson, S. E., Tucker, C. J., and Ba, M. B. (1998). Desertification, Drought, and Surface Vegetation: An Example from the West African Sahel. Bulletin of the American Meteorological Society, 79(5), 815–829. doi:10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2
Nicholson, S. E. (2001). Climatic and environmental change in Africa during the last two centuries. Climate Research, 17, 123–144. doi:10.3354/cr017123
Nicholson, S. E. (2009). A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dynamics, 32(7–8), 1155–1171. doi:10.1007/s00382-008-0514-3
Oursingbé, M., and Zhonghua, T. (2010). Recharge of the Quaternary Aquifer of Lake Chad Basin Estimated from Oxygen-18 (18O) and Tritium (3H) Isotopes. Journal of American Science, 6(9), 283–292. Retrieved from http://www.jofamericanscience.org/journals/am-sci/am0609/
Pereira, J. M. C., Oom, D., Pereira, P., Turkman, A. A., and Turkman, K. F. (2015). Religious Affiliation Modulates Weekly Cycles of Cropland Burning in Sub-Saharan Africa. (P. Anglewicz, Ed.)PLoS ONE, 10(9), e0139189. doi:10.1371/journal.pone.0139189
Peterson, D. (2012). Retrieval of Sub-Pixel-Based Fire Intensity and its Application for Characterizing Smoke Injection Heights and Fire Weather in North America. University of Nebraska - Lincoln. Retrieved from http://digitalcommons.unl.edu/geoscidiss/30/
Pinty, B., Verstraete, M. M., Gobron, N., Roveda, F., and Govaerts, Y. (2000). Do Man-Made Fires Affect Earth’s Surface Reflectance at Continental Scales? Eos, 81(34), 381–389. doi:10.1029/00EO00281
Polo, I., Ullmann, A., Roucou, P., and Fontaine, B. (2011). Weather Regimes in the Euro-Atlantic and Mediterranean Sector, and Relationship with West African Rainfall over the 1989–2008 Period from a Self-Organizing Maps Approach. Journal of Climate, 24(13), 3423–3432. doi:10.1175/2011JCLI3622.1
Prospero, J. M., and Carlson, T. N. (1981). Saharan air outbreaks over the tropical North Atlantic. Pure and Applied Geophysics, 119(3), 677–691. doi:10.1007/BF00878167
Pytharoulis, I., and Thorncroft, C. (1999). The Low-Level Structure of African Easterly Waves in 1995. Monthly Weather Review, 127(10), 2266–2280. doi:10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2
Rabin, S. S., Magi, B. I., Shevliakova, E., and Pacala, S. W. (2015). Quantifying regional, time-varying effects of cropland and pasture on vegetation fire. Biogeosciences, 12(22), 6591–6604. doi:10.5194/bg-12-6591-2015
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., … Zender, C. S. (2006). The impact of boreal forest fire on climate warming. Science (New York, N.Y.), 314(5802), 1130–2. doi:10.1126/science.1132075
Randles, C. A., and Ramaswamy, V. (2010). Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: A Geophysical Fluid Dynamics Laboratory GCM sensitivity study. Atmospheric Chemistry and Physics, 10, 9819–9831. doi:10.5194/acp-10-9819-2010
Reale, O., Lau, K. M., and da Silva, A. (2011). Impact of Interactive Aerosol on the African Easterly Jet in the NASA GEOS-5 Global Forecasting System. Weather and Forecasting, 26(4), 504–519. doi:10.1175/WAF-D-10-05025.1
Reid, J. S., Eck, T. F., Christopher, S. a., Koppmann, R., Dubovik, O., Eleuterio, D. P., … Zhang, J. (2005). A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics, 5(3), 827–849. doi:10.5194/acp-5-827-2005
Reid, J. S., Hyer, E. J., Prins, E. M., Westphal, D. L., Zhang, J., Wang, J., … Hoffman, J. P. (2009). Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(3), 144–162. doi:10.1109/JSTARS.2009.2027443
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., … Holben, B. N. (2005). The MODIS Aerosol Algorithm, Products, and Validation. Journal of the Atmospheric Sciences, 62(4), 947–973. doi:10.1175/JAS3385.1
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D., Mattoo, S., … Holben, B. N. (2008). Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research: Atmospheres, 113(D14). doi:10.1029/2007JD009661
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., … Woollen, J. (2011). MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 24(14), 3624–3648. doi:10.1175/JCLI-D-11-00015.1
Roberts, G. J., and Wooster, M. J. (2008). Fire Detection and Fire Characterization Over Africa Using Meteosat SEVIRI. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 1200–1218. doi:10.1109/TGRS.2008.915751
Roberts, G. J., Wooster, M. J., Perry, G. L. W., Drake, N., Rebelo, L.-M., and Dipotso, F. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery. Journal of Geophysical Research, 110(D21), D21111. doi:10.1029/2005JD006018
Roberts, G., Wooster, M. J., Freeborn, P. H., and Xu, W. (2011). Integration of geostationary FRP and polar-orbiter burned area datasets for an enhanced biomass burning inventory. Remote Sensing of Environment, 115(8), 2047–2061. doi:10.1016/j.rse.2011.04.006
Román, M. O., Gatebe, C. K., Schaaf, C. B., Poudyal, R., Wang, Z., and King, M. D. (2011). Variability in surface BRDF at different spatial scales (30m-500m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements. Remote Sensing of Environment, 115(9), 2184–2203. doi:10.1016/j.rse.2011.04.012
Ropelewski, C. F., and Halpert, M. S. (1987). Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115(8), 1606–1626. doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
Roundy, P. E., and Frank, W. M. (2004). A Climatology of Waves in the Equatorial Region. Journal of the Atmospheric Sciences, 61(17), 2105–2132. doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2
Roy, D. P., and Kumar, S. S. (2016). Multi-year MODIS active fire type classification over the Brazilian Tropical Moist Forest Biome. International Journal of Digital Earth, 1–31. doi:10.1080/17538947.2016.1208686
Sakaeda, N., Wood, R., and Rasch, P. J. (2011). Direct and semidirect aerosol effects of southern African biomass burning aerosol. Journal of Geophysical Research, 116(D12), D12205. doi:10.1029/2010JD015540
Salomon, J. G., Schaaf, C. B., Strahler, A. H., Gao, F., and Jin, Y. (2006). Validation of the MODIS Bidirectional Reflectance Distribution Function and Albedo Retrievals Using Combined Observations From the Aqua and Terra Platforms. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1555–1564. doi:10.1109/TGRS.2006.871564
Sander, N., and Jones, S. C. (2008). Diagnostic measures for assessing numerical forecasts of African Easterly Waves. Meteorologische Zeitschrift, 17(2), 209–220. doi:10.1127/0941-2948/2008/0269
Scepan, J., and Estes, J. E. (2001). Thematic Validation of Global Land Cover Data Sets – Procedures and Interpretation Methods. In IEEE 2001 International Geoscience and Remote Sensing Symposium Proceedings (Vol. 3, pp. 1119–1121). Sydney, NSW: IEEE. doi:10.1109/IGARSS.2001.976765
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., … Roy, D. (2002). Global albedo, BRDF and nadir BRDF-adjusted reflectance products from MODIS. In IEEE International Geoscience and Remote Sensing Symposium (Vol. 83, pp. 135–148). IEEE. doi:10.1109/IGARSS.2002.1025877
Scholes, R. J., Kendall, J., and Justice, C. O. (1996). The quantity of biomass burned in southern Africa. Journal of Geophysical Research, 101(D19), 23667. doi:10.1029/96JD01623
Schroeder, W., Ruminski, M., Csiszar, I., Giglio, L., Prins, E., Schmidt, C., and Morisette, J. (2008). Validation analyses of an operational fire monitoring product: The Hazard Mapping System. International Journal of Remote Sensing, 29(20), 6059–6066. doi:10.1080/01431160802235845
Schroeder, W., Ellicott, E., Ichoku, C., Ellison, L., Dickinson, M. B., Ottmar, R. D., … Kremens, R. (2014). Integrated active fire retrievals and biomass burning emissions using complementary near-coincident ground, airborne and spaceborne sensor data. Remote Sensing of Environment, 140, 719–730. doi:10.1016/j.rse.2013.10.010
Schroeder, W., Morisette, J. T., Csiszar, I., Giglio, L., Morton, D., and Justice, C. O. (2005). Characterizing Vegetation Fire Dynamics in Brazil through Multisatellite Data: Common Trends and Practical Issues. Earth Interactions, 9(13), 1–26. doi:10.1175/EI120.1
Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., and Morton, D. (2008). Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sensing of Environment, 112(5), 2711–2726. doi:10.1016/j.rse.2008.01.005
Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J. G., … van het Bolscher, M. (2008). Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles, 22(2), 1–17. doi:10.1029/2007GB003031
Schumann, G. J.-P., Neal, J. C., Mason, D. C., and Bates, P. D. (2011). The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods. Remote Sensing of Environment, 115(10), 2536–2546. doi:10.1016/j.rse.2011.04.039
Schumann, G., Hostache, R., Puech, C., Hoffmann, L., Matgen, P., Pappenberger, F., and Pfister, L. (2007). High-resolution 3-D flood information from radar imagery for flood hazard management. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1715–1725. doi:10.1109/TGRS.2006.888103
Seiler, W., and Crutzen, P. J. (1980). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2(3), 207–247. doi:10.1007/BF00137988
Shao, G., and Wu, J. (2008). On the accuracy of landscape pattern analysis using remote sensing data. Landscape Ecology, 23(5), 505–511. doi:10.1007/s10980-008-9215-x
Singh, A., Dieye, A. M., Finco, M., Chenoweth, M. S., Fosnight, E. A., and Allotey, A. (1999). Early Warning of Selected Emerging Environmental issues in Africa: Change and Correlation from a Geographic Perspective. Nairobi, Kenya. Retrieved from https://na.unep.net/siouxfalls/reparchive.php
Smith, M. D., van Wilgen, B. W., Burns, C. E., Govender, N., Potgieter, A. L. F., Andelman, S., … Trollope, W. S. W. (2013). Long-term effects of fire frequency and season on herbaceous vegetation in savannas of the Kruger National Park, South Africa. Journal of Plant Ecology, 6(1), 71–83. doi:10.1093/jpe/rts014
Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., … Kukkonen, J. (2009). An operational system for the assimilation of satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmospheric Chemistry and Physics Discussions, 9, 6483–6513. doi:10.5194/acpd-9-6483-2009
Solmon, F., Elguindi, N., and Mallet, M. (2012). Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Climate Research, 52, 97–113. doi:10.3354/cr01039
Spyrou, C., Kallos, G., Mitsakou, C., Athanasiadis, P., Kalogeri, C., and Iacono, M. J. (2013). Modeling the radiative effects of desert dust on weather and regional climate. Atmospheric Chemistry and Physics, 13, 5489–5504. doi:10.5194/acp-13-5489-2013
Stier, P., Schutgens, N. A. J., Bellouin, N., Bian, H., Boucher, O., Chin, M., … Zhou, C. (2013). Host model uncertainties in aerosol radiative forcing estimates: Results from the AeroCom Prescribed intercomparison study. Atmospheric Chemistry and Physics, 13, 3245–3270. doi:10.5194/acp-13-3245-2013
Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X. (1990). The second generation regional acid deposition model chemical mechanism for regional air quality modeling. Journal of Geophysical Research, 95(D10), 16343–16367. doi:10.1029/JD095iD10p16343
Strahler, A., Muchoney, D., Borak, J., Friedl, M., Gopal, S., Lambin, E., and Moody, A. (1999). MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD): MODIS Land Cover and Land-Cover Change (5.0.).
Tarhule, A., and Lamb, P. J. (2003). Climate Research and Seasonal Forecasting for West Africans: Perceptions, Dissemination, and Use? Bulletin of the American Meteorological Society, 84(12), 1741–1759. doi:10.1175/BAMS-84-12-1741
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., … Tie, X. (2006). Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric Chemistry and Physics, 6, 1777–1813. doi:10.5194/acp-6-1777-2006
Thorncroft, C. D., Parker, D. J., Burton, R. R., Diop, M., Ayers, J. H., Barjat, H., … Tompkins, A. M. (2003). The JET2000 Project: Aircraft Observations of the African Easterly Jet and African Easterly Waves. Bulletin of the American Meteorological Society, 84(3), 337–351. doi:10.1175/BAMS-84-3-337
Thorncroft, C. D., Hall, N. M. J., and Kiladis, G. N. (2008). Three-Dimensional Structure and Dynamics of African Easterly Waves. Part III: Genesis. Journal of the Atmospheric Sciences, 65(11), 3596–3607. doi:10.1175/2008JAS2575.1
Thorncroft, C., and Hodges, K. (2001). African Easterly Wave Variability and Its Relationship to Atlantic Tropical Cyclone Activity. Journal of Climate, 14(6), 1166–1179. doi:10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2
Torrence, C., and Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
Torrence, C., and Webster, P. J. (1998). The annual cycle of persistence in the El Nino/Southern Oscillation. Quarterly Journal of the Royal Meteorological Society, 124(550), 1985–2004. doi:10.1002/qj.49712455010
Tosca, M. G., Diner, D. J., Garay, M. J., and Kalashnikova, O. V. (2015). Human-caused fires limit convection in tropical Africa: First temporal observations and attribution. Geophysical Research Letters, 42(15), 6492–6501. doi:10.1002/2015GL065063
Tosca, M. G., Diner, D. J., Garay, M. J., and Kalashnikova, O. V. (2014). Observational evidence of fire-driven reduction of cloud fraction in tropical Africa. Journal of Geophysical Research: Atmospheres, 119. doi:10.1002/2014JD021759
Townsend, P. A., and Walsh, S. J. (1998). Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology, 21(3–4), 295–312. doi:10.1016/S0169-555X(97)00069-X
Tyner, B., and Aiyyer, A. (2012). Evolution of African Easterly Waves in Potential Vorticity Fields. Monthly Weather Review, 140(11), 3634–3652. doi:10.1175/MWR-D-11-00170.1
UNEP. (2004). Lake Chad Basin, GIWA Regional assessment 43. (M. Fortnam and J. Oguntola, Eds.). Kalmar, Sweden: University of Kalmar. Retrieved from http://www.unep.org/dewa/giwa/publications/r43.asp
UNEP. (2006). Impacts on Africa’s Lakes: Case Studies of Africa’s Changing Lakes. In Africa’s lakes: Atlas of our changing environment (pp. 20–37). Retrieved from http://na.unep.net/atlas/africaLakes/book.php
UNEP. (2006). People and Lakes: Human Influences on Africa’s Lakes. In Africa’s lakes: Atlas of our changing environment (pp. 6–19). Retrieved from http://na.unep.net/atlas/africaLakes/book.php
Urbanski, S. P., Hao, W. M., and Nordgren, B. (2011). The wildland fire emission inventory: Western United States emission estimates and an evaluation of uncertainty. Atmospheric Chemistry and Physics, 11, 12973–13000. doi:10.5194/acp-11-12973-2011
Val Martin, M., Kahn, R. a., Logan, J. a., Paugam, R., Wooster, M., and Ichoku, C. (2012). Space-based observational constraints for 1-D fire smoke plume-rise models. Journal of Geophysical Research, 117(D22), D22204. doi:10.1029/2012JD018370
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano, a. F. (2006). Interannual variability of global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics Discussions, 6(2), 3175–3226. doi:10.5194/acpd-6-3175-2006
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., … van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735. doi:10.5194/acp-10-11707-2010
van Donkelaar, A., Martin, R. V., Levy, R. C., da Silva, A. M., Krzyzanowski, M., Chubarova, N. E., … Cohen, A. J. (2011). Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. Atmospheric Environment, 45(34), 6225–6232. doi:10.1016/j.atmosenv.2011.07.068
Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., and Roberts, G. J. (2009). An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. Journal of Geophysical Research, 114(D18), D18205. doi:10.1029/2008JD011188
Wang, J., and Christopher, S. A. (2006). Mesoscale modeling of Central American smoke transport to the United States: 2. Smoke radiative impact on regional surface energy budget and boundary layer evolution. Journal of Geophysical Research: Atmospheres, 111(D14). doi:10.1029/2005JD006720
Wang, J., Ge, C., Yang, Z., Hyer, E. J., Reid, J. S., Chew, B. N., … Zhang, M. (2013). Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography. Atmospheric Research, 122, 486–503. doi:10.1016/j.atmosres.2012.05.009
Wanner, W., Strahler, A. H., Hu, B., Lewis, P., Muller, J. P., Li, X., … Barnsley, M. J. (1997). Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm. Journal of Geophysical Research: Atmospheres, 102(D14), 17143–17161. doi:10.1029/96JD03295
Ward, M. N. (1998). Diagnosis and Short-Lead Time Prediction of Summer Rainfall in Tropical North Africa at Interannual and Multidecadal Timescales. Journal of Climate, 11(12), 3167–3191. doi:10.1175/1520-0442(1998)011<3167:DASLTP>2.0.CO;2
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. a., Orlando, J. J., and Soja, a. J. (2011). The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. doi:10.5194/gmd-4-625-2011
Wilcox, E. M. (2012). Direct and semi-direct radiative forcing of smoke aerosols over clouds. Atmospheric Chemistry and Physics, 12, 139–149. doi:10.5194/acp-12-139-2012
Wilcox, E. M., Lau, K. M., and Kim, K. M. (2010). A northward shift of the North Atlantic Ocean Intertropical Convergence Zone in response to summertime Saharan dust outbreaks. Geophysical Research Letters, 37(4). doi:10.1029/2009GL041774
Williams, A. P., and Funk, C. (2011). A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dynamics, 37(11–12), 2417–2435. doi:10.1007/s00382-010-0984-y
Wisnowski, J. W., Montgomery, D. C., and Simpson, J. R. (2001). A Comparative analysis of multiple outlier detection procedures in the linear regression model. Computational Statistics & Data Analysis, 36(3), 351–382. doi:10.1016/S0167-9473(00)00042-6
Wolter, K. (1987). The Southern Oscillation in Surface Circulation and Climate over the Tropical Atlantic, Eastern Pacific, and Indian Oceans as Captured by Cluster Analysis. Journal of Climate and Applied Meteorology, 26(4), 540–558. doi:10.1175/1520-0450(1987)026<0540:TSOISC>2.0.CO;2
Wooster, M. J. (2003). Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, 86(1), 83–107. doi:10.1016/S0034-4257(03)00070-1
Wooster, M. J., Roberts, G., Perry, G. L. W., and Kaufman, Y. J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research, 110(D24), D24311. doi:10.1029/2005JD006318
Xu, W., Wooster, M. J., Roberts, G., and Freeborn, P. (2010). New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sensing of Environment, 114(9), 1876–1895. doi:10.1016/j.rse.2010.03.012
Xue, Y., and Shukla, J. (1993). The influence of land surface properties on Sahel climate. Part 1: Desertification. Journal of Climate, 6(12), 2232–2245. doi:10.1175/1520-0442(1993)006<2232:TIOLSP>2.0.CO;2
Yokelson, R. J., Burling, I. R., Urbanski, S. P., Atlas, E. L., Adachi, K., Buseck, P. R., … Wold, C. E. (2011). Trace gas and particle emissions from open biomass burning in Mexico. Atmospheric Chemistry and Physics, 11, 6787–6808. doi:10.5194/acp-11-6787-2011
Yurganov, L. N., Rakitin, V., Dzhola, A., August, T., Fokeeva, E., George, M., … Strow, L. (2011). Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data. Atmospheric Chemistry and Physics, 11, 7925–7942. doi:10.5194/acp-11-7925-2011
Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., and Huang, H.-C. (2012). Near-real-time global biomass burning emissions product from geostationary satellite constellation. Journal of Geophysical Research, 117(D14), D14201. doi:10.1029/2012JD017459
Zhang, X., Kondragunta, S., Schmidt, C., and Kogan, F. (2008). Near real time monitoring of biomass burning particulate emissions (PM2.5) across contiguous United States using multiple satellite instruments. Atmospheric Environment, 42(29), 6959–6972. doi:10.1016/j.atmosenv.2008.04.060
Zuluaga, M. D., Webster, P. J., and Hoyos, C. D. (2012). Variability of aerosols in the tropical Atlantic Ocean relative to African Easterly Waves and their relationship with atmospheric and oceanic environments. Journal of Geophysical Research: Atmospheres, 117(D16). doi:10.1029/2011JD017181