NASA Logo, National Aeronautics and Space Administration

National Aeronautics and Space Administration

Goddard Space Flight Center


Fire Energetics and Emissions Research

FEER Updates


20.Feb.2019 - VIIRS active fire data available as VNPFIRE product.

12.Feb.2019 - FEERv1.0 Emissions processing stream fixed.

08.Feb.2019 - MODFIRE processing stream fixed.

31.Jul.2018 - Suomi-NPP VIIRS fire data added to Africa Explorer.

Interactions and Feedbacks between Biomass Burning and Water Cycle Dynamics across the Northern Sub-Saharan African Region

** Africa Explorer **

Welcome to this site devoted to the study of the interactions between biomass burning and climate in Africa. The following snippets highlight our project funded under two successive NASA Interdisciplinary Research in Earth Science (IDS) proposals, beginning in 2009. The IDS-2013 successor project aims to reinforce and amplify the preceding IDS-2009 interdisciplinary study by incorporating the potential impacts of similar environmental phenomena and processes in the adjoining Northern and Southern Africa as well as the Atlantic and Indian Oceans on the water cycle dynamics in the NSSA region. Our team is well constituted, with scientists from different but complementary areas of expertise, including biomass burning and surface characterization, aerosols and atmospheric modeling, cloud processes and precipitation, surface hydrology, ground-water hydrology, and climate modeling. Most of these scientists have substantial experience working in the NSSA region. This research is strategically designed to encompass in depth and breadth the different disciplines relevant to the subject matter, with dynamic linkages throughout the research period, in order to obtain a comprehensive result that relates the scientific outcome to societal impacts, as well as future projections of these. This is needed to formulate mitigation options to avert the looming regional/global catastrophic outcome of a potentially irreversible "takeover" of that region by drought/desertification, exemplified by the drying up of Lake Chad and other water resources. Detailed description / List of team members

The Issue

The Northern Sub-Saharan African (NSSA) region, extending from the southern fringes of the Sahara to the Equator, and stretching west to east from the Atlantic to the Indian ocean coasts, plays a prominent role in the genesis of global atmospheric circulation and the birth of such major (and often catastrophic) events as hurricanes and the distribution of the Saharan dust to other parts of the world. Therefore, this NSSA region represents a critical variable in the global climate change equation. Recent satellite-based studies have revealed that the NSSA region has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be a major driver of the regional carbon, energy, and water cycles. We acknowledge that the rainy season in the NSSA region is from April to September while biomass burning occurs mainly during the dry season (October to March). Nevertheless, these two phenomena are indirectly coupled to each other through a chain of complex processes and conditions, including land-cover and surface-albedo changes, the carbon cycle, evapotranspiration, drought, desertification, surface water runoff, ground water recharge, and variability in atmospheric composition, heating rates, and circulation.

Fires in West Africa

Fires in West Africa

This image from the Moderate Resolution Imaging Spectroradiometer <a href="">(MODIS)</a> on NASA&rsquo;s <a href="">Aqua</a> satellite on March 17, 2009, shows scores of fires burning in Guinea, Sierra Leone, and Liberia. Read more

The Research

We are in the midst of an interdisciplinary research effort, which seeks to address the effects of the intense biomass burning observed from satellite year after year across the NSSA region on the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. The proposal brings together a multi-disciplinary team of scientists from different but complimentary fields of expertise that has helped to unravel the coupling of these phenomena and associated processes and outcomes. Through this effort we are making gains to understand the impacts of recent (2000-present) biomass-burning by monitoring and assessing multiple regional surface, atmospheric, and water cycle processes through remote sensing and modeling approaches that integrate research, systems engineering, and applications expertise, in order to achieve concrete results for societal benefits and climate assessments.

African Environmental Processes and Water-Cycle Dynamics - IOPscience

African Environmental Processes and Water-Cycle Dynamics - IOPscience

This Environmental Research Letters focus issue invites interdisciplinary studies that can help unravel the links between African environmental processes such as land-use activities, biomass burning, and atmospheric composition and water-cycle-related phenomena such as rainfall, soil moisture, and groundwater dynamics. Read more

NASA ESD Highlight: New Biomass Burning Smoke Emissions Dataset Fills Gap between Previous Estimations and Expected Values

NASA ESD Highlight: New Biomass Burning Smoke Emissions Dataset Fills Gap between Previous Estimations and Expected Values

Fires burn extensively in most vegetated parts of the world. Smoke from biomass burning contributes a major portion of the annual carbon emissions to the atmosphere. Thus, an accurate smoke emissions inventory is imperative to correctly understand the impacts of biomass burning on the global climate system and regional environmental dynamics. A major effort to create a new emissions dataset for this very purpose has resulted in the FEER (Fire Energetics and Emissions Research) emissions product: a globally gridded product that is derived from satellite measurements of fire radiative power (FRP) and aerosol optical depth (AOD) in conjunction with model-assimilated wind fields. Read more

NASA ESD Highlight: Surface Albedo Changes from Wildfires in Northern Sub-Saharan Africa

NASA ESD Highlight: Surface Albedo Changes from Wildfires in Northern Sub-Saharan Africa

The study demonstrates simple methods for characterizing and deriving the trajectories of post-fire albedo dynamics from satellite data that is consistent and widely available. Results show that savannas accounted for >86% of the total MODIS fire count between 2003 and 2011 in Northern sub-Saharan Africa, that only a small fraction of the savanna pixels (<=10%) burn in two successive years, and that about 47% had any fire recurrence in 9 years. Read more

A Band of Fire in Sub-Saharan Africa

A Band of Fire in Sub-Saharan Africa

Every year, a massive band of manmade fire emerges in satellite imagery of northern Sub-Saharan Africa in November. Read more

NASA ESD Highlight: Hydrological Impacts from Fire-Induced Surface Albedo Darkening in Africa

NASA ESD Highlight: Hydrological Impacts from Fire-Induced Surface Albedo Darkening in Africa

Large scale events such as fires need to be better represented in most land surface models as they have a direct impact on the hydrological fluxes of a region. Here we have investigated how the Catchment Land Surface Model simulates hydrological and energy fluxes based on estimated change of surface albedo due to fires over different land cover types. Burning of biomass as observed by satellites causes a change in albedo that leads to a 1-3% decrease in soil moisture and up to a 1degC increase in surface temperature. Read more

A Tale of Fire and Water: A NASA Scientist’s Quest to Understand the Rain in Africa

A Tale of Fire and Water: A NASA Scientist’s Quest to Understand the Rain in Africa

Charles Ichoku wants to understand whether fires in sub-Saharan Africa are changing the timing and duration of rains. The viability of Lake Chad may depend on what his team finds. Read more

NASA ESD Highlight: Fire-induced land conversion to cropland is increasing in middle Africa

NASA ESD Highlight: Fire-induced land conversion to cropland is increasing in middle Africa

NSSA accounts for 20%–25% of the global carbon emissions from biomass burning. Given such overwhelming occurrence of biomass burning in this region and its inherent potential to affect vegetation changes, land degradation, deforestation, surface albedo, aerosol emissions, and surface evapotranspiration, it is reasonable to hypothesize that biomass burning, directly or indirectly, exerts significant impact on NSSA’s environmental dynamics and water cycle across different spatial and temporal scales. Widespread burning that peaked in 2006 across the northern part of sub-Saharan Africa influences land-cover changes that result in a net conversion of 0.28%/year of the total land area to cropland, with the majority (0.18%/year) coming from savanna. Over the last decade, the trend is increasing from savanna, forest, and wetlands to cropland. Read more

Study Finds a Connection Between Wildfires and Drought

Study Finds a Connection Between Wildfires and Drought

For centuries drought has come and gone across northern sub-Saharan Africa. In recent years, water shortages have been most severe in the Sahel—a band of semi-arid land situated just south of the Sahara Desert and stretching coast-to-coast across the continent, from Senegal and Mauritania in the west to Sudan and Eritrea in the east. Drought struck the Sahel most recently in 2012, triggering food shortages for millions of people due to crop failure and soaring food prices. Read more

Application and Outreach

This project has enabled us to not only maintain previous collaborations but to also establish new collaborations with several colleagues in the US, Europe, and Africa who have interest in related research in our study region. The collaborations were established both at the project level and at the level of individual co-investigators. Furthermore, various user organizations such as the World Bank, Lake Chad Basin Commission (LCBC), the Regional Centre for Mapping of Resources for Development (RCMRD), and Nigerian Space Agency (NASRDA) were contacted and briefed during the course of this project, thereby engendering their interest in developing partnership with us to maximize the utilization of our results for societal benefit. There is a general support from these organizations to receive and evaluate our results or assist with collection of ancillary data, when applicable.

Interactive Meeting of Stakeholders on the Lake Chad Basin

Interactive Meeting of Stakeholders on the Lake Chad Basin

On June 25, 2012 our project team held an interactive meeting in Abuja, Nigeria with a wide range of stakeholders from various government and non-profit organizations working in the Lake Chad Basin (LCB). The meeting was hosted by the Directorate for Technical Cooperation in Africa (DTCA), an agency of the Ministry of Foreign Affairs in Nigeria. Drs. Charles Ichoku and Jimmy Adegoke represented our NASA IDS project team at the meeting. The key objectives of the interactive meeting were to: 1) Sensitize the Lake Chad Basin stakeholders on the research being undertaken by our NASA IDS team, 2) Determine how the needs and priorities of inhabitants of the LCB can constrain, inform or influence our ongoing study, and 3) Explore how NASA science and technology can best support the attainment of the development goals of the LCB. Thirty-two participants representing 15 agencies attended the one-day meeting.

Bilateral workshop between WASCAL and NASA held

Bilateral workshop between WASCAL and NASA held

A workshop was held to explore possible collaboration areas between the two international outfits, NASA and WASCAL. WASCAL (West African Science Service Center on Climate Change and Adapted Land Use) is a large-scale research-focused Climate Service Centre working on enhancing the resilience of human and environmental systems to climate change and increased variability. Read more

COSPAR Capacity Building Workshop 2017: Interdisciplinary Remote Sensing, Modeling, and Validation of Environmental Processes

COSPAR Capacity Building Workshop 2017: Interdisciplinary Remote Sensing, Modeling, and Validation of Environmental Processes

The COSPAR Capacity Building (CB) Workshop on Interdisciplinary Remote Sensing, Modeling, and Validation of Environmental Processes is being held at Kwame Nkrumah University of Science and Technology (KNUST) in Kumasi, Ghana from 12-23 June 2017. The workshop is bringing together an extensive suite of major international research programs/projects to transfer a large knowledge base to young professionals and graduate students in West Africa. Read more

Visualization and Tools

Numerous visualization and anlysis tools have been developed in connection with this research project, including maps, data visualization, interactive features, and forecasts.

Global MODIS Fires Tool

Global MODIS Fires Tool

Daily MODIS active fire detections from the MOD14/MYD14 product are made available within Google Earth. The fire icons will show important information about each fire when clicked; the whole dataset in plain text daily files is made available here.

Sub-Saharan Africa Fire Radiative Power Imagery

Sub-Saharan Africa Fire Radiative Power Imagery

A database of daily and monthly images showing fire strength (specifically, fire radiative power, or FRP) in Sub-Saharan Africa (SSA) is continually updated and maintained. The fire season in SSA is synonymous with the dry season, which generally extends from October/November through April/May for Northern SSA, and the inverse months for Southern SSA.

AfricaExplorer Tool

AfricaExplorer Tool

The AfricaExplorer tool was developed for the ability to quickly visualize our data products - both input products and derivative products. The imagery includes the past few days of data, and also the forecasted data for a few days into the future. The tool has the ability to plot time series charts for key cities around the continent.

Project Team


Aligeti, N. (2011). Satellite-based assessment of invasive vegetation in Lake Chad Basin, West Africa. University of Missouri - Kansas City. Retrieved from

Babama’aji, R. A., and Lee, J. (2013). Land use/land cover classification of the vicinity of Lake Chad using NigeriaSat-1 and Landsat data. Environmental Earth Sciences, 71(10), 4309–4317. doi:10.1007/s12665-013-2825-x

Babama’aji, R. A. (2013). Impacts of Precipitation, Land Use Land Cover and Soil Type on the Water Balance of Lake Chad Basin. University of Missouri - Kansas City. Retrieved from

Dezfuli, A. (2017). Climate of Western and Central Equatorial Africa. Oxford Research Encyclopedia of Climate Science, 1(November), 1–46. doi:10.1093/acrefore/9780190228620.013.511

Dezfuli, A. K., Ichoku, C. M., Huffman, G. J., Mohr, K. I., Selker, J. S., van de Giesen, N., … Annor, F. O. (2017). Validation of IMERG Precipitation in Africa. Journal of Hydrometeorology, 18(10), 2817–2825. doi:10.1175/JHM-D-17-0139.1

Engelbrecht, F., Adegoke, J., Bopape, M.-J., Naidoo, M., Garland, R., Thatcher, M., … Gatebe, C. (2015). Projections of rapidly rising surface temperatures over Africa under low mitigation. Environmental Research Letters, 10(8), 085004. doi:10.1088/1748-9326/10/8/085004

Gatebe, C. K., Ichoku, C. M., Poudyal, R., Román, M. O., and Wilcox, E. (2014). Surface albedo darkening from wildfires in northern sub-Saharan Africa. Environmental Research Letters, 9(6), 065003. doi:10.1088/1748-9326/9/6/065003

Hosseinpour, F., and Wilcox, E. M. (2014). Aerosol interactions with African/Atlantic climate dynamics. Environmental Research Letters, 9(7), 075004. doi:10.1088/1748-9326/9/7/075004

Ichoku, C., and Adegoke, J. (2016). Synthesis and review: African environmental processes and water-cycle dynamics. Environmental Research Letters, 11(12), 120206. doi:10.1088/1748-9326/11/12/120206

Ichoku, C., and Ellison, L. (2014). Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmospheric Chemistry and Physics, 14(13), 6643–6667. doi:10.5194/acp-14-6643-2014

Ichoku, C., Ellison, L. T., Willmot, K. E., Matsui, T., Dezfuli, A. K., Gatebe, C. K., … Habib, S. (2016). Biomass burning, land-cover change, and the hydrological cycle in Northern sub-Saharan Africa. Environmental Research Letters, 11(9), 095005. doi:10.1088/1748-9326/11/9/095005

Idowu, O. S. (2012). The role of land-atmosphere and aerosol interactions on meso-scale convective weather systems across West Africa. University of Missouri - Kansas City. Retrieved from

Iguchi, T., Matsui, T., Tao, Z., Kim, D., Ichoku, C. M., Ellison, L., and Wang, J. (2018). NU-WRF Aerosol Transport Simulation over West Africa: Effects of Biomass Burning on Smoke Aerosol Distribution. Journal of Applied Meteorology and Climatology, 57(7), 1551–1573. doi:10.1175/JAMC-D-17-0278.1

Long, S., Fatoyinbo, T. E., and Policelli, F. (2014). Flood extent mapping for Namibia using change detection and thresholding with SAR. Environmental Research Letters, 9(3), 035002. doi:10.1088/1748-9326/9/3/035002

Okonkwo, C., and Demoz, B. (2014). Identifying anthropogenic ‘hotspots’ and management of water resources in Lake Chad Basin using GIS. Journal of Natural Resources Policy Research, 6(2–3), 135–149. doi:10.1080/19390459.2014.920581

Okonkwo, C., Demoz, B., and Gebremariam, S. (2014). Characteristics of Lake Chad Level Variability and Links to ENSO, Precipitation, and River Discharge. The Scientific World Journal, 2014. doi:10.1155/2014/145893

Okonkwo, C., Demoz, B., and Onyeukwu, K. (2013). Characteristics of drought indices and rainfall in Lake Chad Basin. International Journal of Remote Sensing, 34(22), 7945–7961. doi:10.1080/01431161.2013.827813

Okonkwo, C., Demoz, B., Sakai, R., Ichoku, C., Anarado, C., Adegoke, J., … Abdullahi, S. I. (2015). Combined effect of El Niño southern oscillation and Atlantic multidecadal oscillation on Lake Chad level variability. (N. Krakauer, Ed.)Cogent Geoscience, 1(1117829). doi:10.1080/23312041.2015.1117829

Park, C. (2012). VELAS: A fully-distributed daily hydrologic feedback model with emphasis on vegetation, land cover, and soil water dynamics. University of Missouri - Kansas City. Retrieved from

Park, C., Lee, J., and Koo, M. H. (2013). Development of a fully-distributed daily hydrologic feedback model addressing vegetation, land cover, and soil water dynamics (VELAS). Journal of Hydrology, 493, 43–56. doi:10.1016/j.jhydrol.2013.04.027

Policelli, F., Hubbard, A., Jung, H., Zaitchik, B., and Ichoku, C. (2018). Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data. Remote Sensing, 10(2), 252. doi:10.3390/rs10020252

Skaskevych, A. (2014). A Comparison Study of GRACE-Based Groundwater Modeling for Data-Rich and Data-Scarce Regions. University of Missouri - Kansas City. Retrieved from

Tobar, I. M. (2012). Geostatistical analysis of land use/land cover changes and population growth trends in the Komadugu-Yobe River Basin in Nigeria. University of Missouri - Kansas City. Retrieved from

Wang, J., Yue, Y., Wang, Y., Ichoku, C., Ellison, L., and Zeng, J. (2018). Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region. Journal of Geophysical Research: Atmospheres, 123(1), 507–528. doi:10.1002/2017JD026840

Yang, Z. (2013). Mesoscale Modeling and Satellite Observation of Transport and Mixing of Smoke and Dust Particles over Northern Sub-Saharan African Region. University of Nebraska - Lincoln. Retrieved from

Yang, Z., Wang, J., Ichoku, C., Hyer, E., and Zeng, J. (2013). Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub-Saharan African region. Journal of Geophysical Research: Atmospheres, 118(21), 12139–12157. doi:10.1002/2013JD020644

Zhang, F., Wang, J., Ichoku, C., Hyer, E. J., Yang, Z., Ge, C., … da Silva, A. (2014). Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: a case study in northern sub-Saharan African region. Environmental Research Letters, 9(7), 075002. doi:10.1088/1748-9326/9/7/075002


Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U. (1998). Modal Aerosol Dynamics model for Europe: Development and first applications. Atmospheric Environment, 32(17), 2981–2999. doi:10.1016/S1352-2310(98)00006-5

Adeel, Z., Safriel, U., Niemeijer, D., White, R., de Kalbermatten, G., Glantz, M., … Yapi-Gnaore, V. (2005). Ecosystems and Human Well-being: Desertification Synthesis. (J. Sarukhán, A. Whyte, and MA Board of Review Editors, Eds.). Washington, DC: World Resources Institute.

Adegoke, J. O., Pielke, R. A., Eastman, J., Mahmood, R., and Hubbard, K. G. (2003). Impact of Irrigation on Midsummer Surface Fluxes and Temperature under Dry Synoptic Conditions: A Regional Atmospheric Model Study of the U.S. High Plains. Monthly Weather Review, 131(3), 556–564. doi:10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., … Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. doi:10.5194/acp-11-4039-2011

Al-Hamdan, M. Z., Oduor, P., Flores, A. I., Kotikot, S. M., Mugo, R., Ababu, J., and Farah, H. (2017). Evaluating land cover changes in Eastern and Southern Africa from 2000 to 2010 using validated Landsat and MODIS data. International Journal of Applied Earth Observation and Geoinformation, 62(April), 8–26. doi:10.1016/j.jag.2017.04.007

Andela, N., and van der Werf, G. R. (2014). Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Climate Change, 4(9), 791–795. doi:10.1038/nclimate2313

Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E. (1976). A Land Use and Land Cover Classification System for Use with Remote Sensor Data. Retrieved from

Andreae, M. O., and Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966. doi:10.1029/2000GB001382

Andres, R. J., Boden, T. A., Bréon, F. M., Ciais, P., Davis, S., Erickson, D., … Treanton, K. (2012). A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences, 9, 1845–1871. doi:10.5194/bg-9-1845-2012

Barbosa, P. M., Stroppiana, D., Grégoire, J. M., and Pereira, J. M. C. (1999). An assessment of vegetation fire in Africa (1981-1991): Burned areas, burned biomass, and atmospheric emissions. Global Biogeochemical Cycles, 13(4), 933–950. doi:10.1029/1999GB900042

Bdliya, H. H., and Bloxom, M. (2007). Transboundary Diagnostic Analysis of the Lake Chad Basin. Retrieved from

Beilfuss, R. (2012). A Risky Climate for Southern African Hydro: Assessing hydrological risks and consequences for Zambezi River Basin dams. Berkeley, CA, USA: International Rivers. Retrieved from

Biasutti, M., and Giannini, A. (2006). Robust Sahel drying in response to late 20th century forcings. Geophysical Research Letters, 33(11), L11706. doi:10.1029/2006GL026067

Biggin, D. S., and Blyth, K. (1996). A Comparison of ERS-1 Satellite Radar and Aerial Photography for River Flood Mapping. Water and Environment Journal, 10(1), 59–64. doi:10.1111/j.1747-6593.1996.tb00009.x

Birkett, C. M. (2000). Synergistic Remote Sensing of Lake Chad: Variability of Basin Inundation. Remote Sensing of Environment, 72(2), 218–236. doi:10.1016/S0034-4257(99)00105-4

Bjerknes, J. (1969). Atmospheric Teleconnections From the Equatorial Pacific. Monthly Weather Review, 97(3), 163–172. doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380–5552. doi:10.1002/jgrd.50171

Boronina, A., and Ramillien, G. (2008). Application of AVHRR imagery and GRACE measurements for calculation of actual evapotranspiration over the Quaternary aquifer (Lake Chad basin) and validation of groundwater models. Journal of Hydrology, 348(1–2), 98–109. doi:10.1016/j.jhydrol.2007.09.061

Burpee, R. W. (1972). The Origin and Structure of Easterly Waves in the Lower Troposphere of North Africa. Journal of the Atmospheric Sciences, 29(1), 77–90. doi:10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2

Burpee, R. W. (1974). Characteristics of North African Easterly Waves During the Summers of 1968 and 1969. Journal of the Atmospheric Sciences, 31(6), 1556–1570. doi:10.1175/1520-0469(1974)031<1556:CONAEW>2.0.CO;2

Cahoon, D. R. J., Stocks, B. J., Levine, J. S., Cofer, W. R. I., and O’Neill, K. P. (1992). Seasonal distribution of African savanna fires. Nature, 356, 133–135. doi:10.1038/359812a0

Cahoon, D. R. J., Stocks, B. J., Levine, J. S., Cofer, W. R. I., and Pierson, J. M. (1994). Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. Journal of Geophysical Research: Atmospheres, 99(D9), 18627–18638. doi:10.1029/94JD01024

Caminade, C., and Terray, L. (2010). Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Climate Dynamics, 35(1), 75–94. doi:10.1007/s00382-009-0545-4

Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., … Pierce, J. R. (2013). Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67–71. doi:10.1038/nature12674

Chang, E. K. M. (1993). Downstream Development of Baroclinic Waves As Inferred from Regression Analysis. Journal of the Atmospheric Sciences, 50(13), 2038–2053. doi:10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2

Charney, J. G. (1975). Dynamics of deserts and drought in the Sahel. Quarterly Journal of the Royal Meteorological Society, 101(428), 193–202. doi:10.1002/qj.49710142802

Charney, J. G., and Stern, M. E. (1962). On the Stability of Internal Baroclinic Jets in a Rotating Atmosphere. Journal of the Atmospheric Sciences, 19(2), 159–172. doi:10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2

Chen, T.-C., and van Loon, H. (1987). Interannual Variation of the Tropical Easterly Jet. Monthly Weather Review, 115(8), 1739–1759. doi:10.1175/1520-0493(1987)115<1739:IVOTTE>2.0.CO;2

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., … Nakajima, T. (2002). Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Journal of the Atmospheric Sciences, 59(3), 461–483. doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2

Chou, M.-D., Suarez, M. J., Ho, C.-H., Yan, M. M.-H., and Lee, K.-T. (1998). Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. Journal of Climate, 11(2), 202–214. doi:10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2

Coe, M. T., and Foley, J. A. (2001). Human and natural impacts on the water resources of the Lake Chad basin. Journal of Geophysical Research, 106(D4), 3349. doi:10.1029/2000JD900587

Coe, M. T., and Birkett, C. M. (2004). Calculation of river discharge and prediction of lake height from satellite radar altimetry: Example for the Lake Chad basin. Water Resources Research, 40(10). doi:10.1029/2003WR002543

Cook, K. H. (2008). Climate science: The mysteries of Sahel droughts. Nature Geoscience, 1, 647–648. doi:10.1038/ngeo320

Cornforth, R. J., Hoskins, B. J., and Thorncroft, C. D. (2009). The impact of moist processes on the African easterly jet–African easterly wave system. Quarterly Journal of the Royal …, 135(641), 894–913. doi:10.1002/qj.414

Crutzen, P. J., and Andreae, M. O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science, 250(4988), 1669–1678. doi:10.1126/science.250.4988.1669

Dembélé, M., and Zwart, S. J. (2016). Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. International Journal of Remote Sensing, 37(17), 3995–4014. doi:10.1080/01431161.2016.1207258

Deshmukh, K. S., and Shinde, G. N. (2005). An Adaptive Color Image Segmentation. Electronic Letters on Computer Vision and Image Analysis, 5(4), 12–23. doi:10.5565/rev/elcvia.115

Diaz, M., and Aiyyer, A. (2013). Energy Dispersion in African Easterly Waves. Journal of the Atmospheric Sciences, 70(1), 130–145. doi:10.1175/JAS-D-12-019.1

Diehl, T., Heil, A., Chin, M., Pan, X., Streets, D., Schultz, M., and Kinne, S. (2012). Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmospheric Chemistry and Physics Discussions, 12, 24895–24954. doi:10.5194/acpd-12-24895-2012

Dozier, J. (1981). A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing of Environment, 11, 221–229. doi:10.1016/0034-4257(81)90021-3

Dunion, J. P., and Marron, C. S. (2008). A Reexamination of the Jordan Mean Tropical Sounding Based on Awareness of the Saharan Air Layer: Results from 2002. Journal of Climate, 21(20), 5242–5253. doi:10.1175/2008JCLI1868.1

Ehrlich, D., Lambin, E. F., and Malingreau, J. (1997). Biomass burning and broad-scale land-cover changes in Western Africa. Remote Sensing of Environment, 61(2), 201–209. doi:10.1016/S0034-4257(97)00002-3

Eisenhauer, J. G. (2003). Regression through the Origin. Teaching Statistics, 25(3), 76–80. doi:10.1111/1467-9639.00136

Eltahir, E. A. B. (1996). El Niño and the Natural Variability in the Flow of the Nile River. Water Resources Research, 32(1), 131–137. doi:10.1029/95WR02968

Eriksen, C. (2007). Why do they burn the ‘bush’? Fire, rural livelihoods, and conservation in Zambia. The Geographical Journal, 173(3), 242–256. doi:10.1111/j.1475-4959.2007.00239.x

Estes, L. D., Chaney, N. W., Herrera-Estrada, J., Sheffield, J., Caylor, K. K., and Wood, E. F. (2014). Changing water availability during the African maize-growing season, 1979–2010. Environmental Research Letters, 9(7), 075005. doi:10.1088/1748-9326/9/7/075005

Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., … Peckham, S. E. (2006). Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. Journal of Geophysical Research: Atmospheres, 111(D21). doi:10.1029/2005JD006721

Feingold, G., Jiang, H., and Harrington, J. Y. (2005). On smoke suppression of clouds in Amazonia. Geophysical Research Letters, 32(2). doi:10.1029/2004GL021369

Fontaine, B., Roucou, P., Gaetani, M., and Marteau, R. (2011). Recent changes in precipitation, ITCZ convection and northern tropical circulation over North Africa (1979-2007). International Journal of Climatology, 31(5), 633–648. doi:10.1002/joc.2108

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., … van Dorland, R. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In T. Nakajima and V. Ramanathan (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 129–234). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Retrieved from

Frank, N. L. (1969). The ’ “inverted V”’cloud pattern—An easterly wave. Monthly Weather Review, 97(2), 130–140. doi:10.1175/1520-0493(1969)097<0130:TVCPEW>2.3.CO;2

Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. a., Nordgren, B. L., Baker, S. P., and Ichoku, C. (2008). Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires. Journal of Geophysical Research, 113(D1), D01301. doi:10.1029/2007JD008679

Freitas, S. R., Longo, K. M., and Andreae, M. O. (2006). Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants. Geophysical Research Letters, 33(17). doi:10.1029/2006GL026608

Fu, J. S., Hsu, N. C., Gao, Y., Huang, K., Li, C., Lin, N. H., and Tsay, S. C. (2012). Evaluating the influences of biomass burning during 2006 BASE-ASIA: A regional chemical transport modeling. Atmospheric Chemistry and Physics, 12, 3837–3855. doi:10.5194/acp-12-3837-2012

Fuller, D. O., and Ottke, C. (2002). Land cover, rainfall and land-surface albedo in West Africa. Climatic Change, 54, 181–204. doi:10.1023/A:1015730900622

Furley, P. A., Rees, R. M., Ryan, C. M., and Saiz, G. (2008). Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Progress in Physical Geography, 32(6), 611–634. doi:10.1177/0309133308101383

Gao, F., Morisette, J. T., Wolfe, R. E., Ederer, G., Pedelty, J., Masuoka, E., … Nightingale, J. (2008). An algorithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geoscience and Remote Sensing Letters, 5(1), 60–64. doi:10.1109/LGRS.2007.907971

Gao, H., Bohn, T. J., Podest, E., McDonald, K. C., and Lettenmaier, D. P. (2011). On the causes of the shrinking of Lake Chad. Environmental Research Letters, 6(3). doi:10.1088/1748-9326/6/3/034021

Gatebe, C. K., and King, M. D. (2016). Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications. Remote Sensing of Environment, 179, 131–148. doi:10.1016/j.rse.2016.03.029

Gatebe, C. K., King, M. D., Platnick, S., Arnold, G. T., Vermote, E. F., and Schmid, B. (2002). Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa. Journal of Geophysical Research: Atmospheres, 108(D13). doi:10.1029/2002JD002397

Ge, C., Wang, J., and Reid, J. S. (2014). Mesoscale modeling of smoke transport over the Southeast Asian maritime continent: Coupling of smoke direct radiative effect below and above the low-level clouds. Atmospheric Chemistry and Physics, 14, 159–174. doi:10.5194/acp-14-159-2014

Geerken, R., Vassolo, S., and Bila, M. (2010). Impacts of climate variability and population pressure on water resources in the Lake Chad Basin. In Conference of the Global Catchment Initiative (pp. 27–33). Retrieved from

Generoso, S., Bey, I., Attié, J.-L., and Bréon, F.-M. (2007). A satellite- and model-based assessment of the 2003 Russian fires: Impact on the Arctic region. Journal of Geophysical Research: Atmospheres, 112(D15). doi:10.1029/2006JD008344

Giannini, A., Saravanan, R., and Chang, P. (2003). Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal Time Scales. Science, 302(5647), 1027–1030. doi:10.1126/science.1089357

Giannini, A., Biasutti, M., and Verstraete, M. M. (2008). A climate model-based review of drought in the Sahel: Desertification, the re-greening and climate change. Global and Planetary Change, 64(3–4), 119–128. doi:10.1016/j.gloplacha.2008.05.004

Giglio, L. (2007). Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sensing of Environment, 108(4), 407–421. doi:10.1016/j.rse.2006.11.018

Giglio, L. (2013). MODIS Collection 5 Active Fire Product User’s Guide (2.5.). Retrieved from

Giglio, L., Csiszar, I., Restás, Á., Morisette, J. T., Schroeder, W., Morton, D., and Justice, C. O. (2008). Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sensing of Environment, 112(6), 3055–3063. doi:10.1016/j.rse.2008.03.003

Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J. (2003). An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment, 87(2–3), 273–282. doi:10.1016/S0034-4257(03)00184-6

Giglio, L., Schroeder, W., and Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. doi:10.1016/j.rse.2016.02.054

Good, P., Harper, A., Meesters, A., Robertson, E., and Betts, R. (2016). Are strong fire–vegetation feedbacks needed to explain the spatial distribution of tropical tree cover? Global Ecology and Biogeography, 25(1), 16–25. doi:10.1111/geb.12380

Görgen, K., Lynch, A. H., Marshall, A. G., and Beringer, J. (2006). Impact of abrupt land cover changes by savanna fire on northern Australian climate. Journal of Geophysical Research: Atmospheres, 111(D19). doi:10.1029/2005JD006860

Govaerts, Y. M., Pereira, J. M., Pinty, B., and Mota, B. (2002). Impact of fires on surface albedo dynamics over the African continent. Journal of Geophysical Research: Atmospheres, 107(D22). doi:10.1029/2002JD002388

Govaerts, Y., and Lattanzio, A. (2008). Estimation of surface albedo increase during the eighties Sahel drought from Meteosat observations. Global and Planetary Change, 64(3–4), 139–145. doi:10.1016/j.gloplacha.2008.04.004

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), 6957–6975. doi:10.1016/j.atmosenv.2005.04.027

Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561–566. doi:10.5194/npg-11-561-2004

Grist, J. P., and Nicholson, S. E. (2001). A Study of the Dynamic Factors Influencing the Rainfall Variability in the West African Sahel. Journal of Climate, 14(7), 1337–1359. doi:10.1175/1520-0442(2001)014<1337:ASOTDF>2.0.CO;2

Gu, G., Adler, R. F., Huffman, G. J., and Curtis, S. (2004). African easterly waves and their association with precipitation. Journal of Geophysical Research, 109(D4). doi:10.1029/2003JD003967

Hagos, S. M., and Cook, K. H. (2008). Ocean Warming and Late-Twentieth-Century Sahel Drought and Recovery. Journal of Climate, 21(15), 3797–3814. doi:10.1175/2008JCLI2055.1

Hall, N. M. J., Kiladis, G. N., and Thorncroft, C. D. (2006). Three-Dimensional Structure and Dynamics of African Easterly Waves. Part II: Dynamical Modes. Journal of the Atmospheric Sciences, 63(9), 2231–2245. doi:10.1175/JAS3742.1

Hao, W. M., and Liu, M.-H. (1994). Spatial and temporal distribution of tropical biomass burning. Global Biogeochemical Cycles, 8(4), 495–503. doi:10.1029/94GB02086

Held, I. M., Delworth, T. L., Lu, J., Findell, K. L., and Knutson, T. R. (2005). Simulation of Sahel drought in the 20th and 21st centuries. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 17891–6. doi:10.1073/pnas.0509057102

Henderson, S. B., Burkholder, B., Jackson, P. L., Brauer, M., and Ichoku, C. (2008). Use of MODIS products to simplify and evaluate a forest fire plume dispersion model for PM10 exposure assessment. Atmospheric Environment, 42(36), 8524–8532. doi:10.1016/j.atmosenv.2008.05.008

Henderson, S. B., Ichoku, C., Burkholder, B. J., Brauer, M., and Jackson, P. L. (2010). The validity and utility of MODIS data for simple estimation of area burned and aerosols emitted by wildfire events. International Journal of Wildland Fire, 19(7), 844. doi:10.1071/WF09027

Henry, J. ‐B., Chastanet, P., Fellah, K., and Desnos, Y. ‐L. (2006). Envisat multi‐polarized ASAR data for flood mapping. International Journal of Remote Sensing, 27(10), 1921–1929. doi:10.1080/01431160500486724

Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., Granier, C., and Simon, M. (2004). Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. Journal of Geophysical Research: Atmospheres, 109(D14). doi:10.1029/2003JD003666

Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., … Zibordi, G. (2001). An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research: Atmospheres, 106(D11), 12067–12097. doi:10.1029/2001JD900014

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., … Smirnov, A. (1998). AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sensing of Environment, 66(1). doi:10.1016/S0034-4257(98)00031-5

Horritt, M. S., Mason, D. C., and Luckman, A. J. (2001). Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model. International Journal of Remote Sensing, 22(13), 2489–2507. doi:10.1080/01431160116902

Hsieh, J.-S., and Cook, K. H. (2005). Generation of African Easterly Wave Disturbances: Relationship to the African Easterly Jet. Monthly Weather Review, 133(5), 1311–1327. doi:10.1175/MWR2916.1

Hsu, N. C., Gautam, R., Sayer, A. M., Bettenhausen, C., Li, C., Jeong, M. J., … Holben, B. N. (2012). Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmospheric Chemistry and Physics, 12, 8037–8053. doi:10.5194/acp-12-8037-2012

Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., … Wolff, D. B. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8(1), 38–55. doi:10.1175/JHM560.1

Hwang, C., Peng, M.-F., Ning, J., Luo, J., and Sui, C.-H. (2005). Lake level variations in China from TOPEX/Poseidon altimetry: data quality assessment and links to precipitation and ENSO. Geophysical Journal International, 161(1), 1–11. doi:10.1111/j.1365-246X.2005.02518.x

Hyer, E., Wang, J., and Arellano, A. (2012). Biomass Burning: Observations, Modeling, and Data Assimilation. Bulletin of the American Meteorological Society, 93(1), ES10-ES14. doi:10.1175/BAMS-D-11-00064.1

Ichoku, C. (2003). MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000. Journal of Geophysical Research, 108(D13), 8499. doi:10.1029/2002JD002366

Ichoku, C. (2005). Quantitative evaluation and intercomparison of morning and afternoon Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol measurements from Terra and Aqua. Journal of Geophysical Research, 110(D10), D10S03. doi:10.1029/2004JD004987

Ichoku, C., Giglio, L., Wooster, M. J., and Remer, L. A. (2008). Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, 112(6), 2950–2962. doi:10.1016/j.rse.2008.02.009

Ichoku, C., Kahn, R., and Chin, M. (2012). Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmospheric Research, 111, 1–28. doi:10.1016/j.atmosres.2012.03.007

Ichoku, C., and Kaufman, Y. J. (2005). A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2636–2649. doi:10.1109/TGRS.2005.857328

Ichoku, C., Martins, J. V., Kaufman, Y. J., Wooster, M. J., Freeborn, P. H., Hao, W. M., … Nordgren, B. L. (2008). Laboratory investigation of fire radiative energy and smoke aerosol emissions. Journal of Geophysical Research, 113(D14), D14S09. doi:10.1029/2007JD009659

Inglacla, J., and Mercier, G. (2007). A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1432–1445. doi:10.1109/TGRS.2007.893568

Isiorho, S. A., Matisoff, G., and Wehn, K. S. (1996). Seepage Relationship Between Lake Chad and the Chad Aquifers. Groundwater, 34(5), 819–826. doi:10.1111/j.1745-6584.1996.tb02076.x

Ito, A., and Penner, J. E. (2004). Global estimates of biomass burning emissions based on satellite imagery for the year 2000. Journal of Geophysical Research: Atmospheres, 109(D14). doi:10.1029/2003JD004423

Janicot, S. (1997). Impact of warm ENSO events on atmospheric circulation and convection over the tropical Atlantic and West Africa. Annales Geophysicae, 15, 471–475. doi:10.1007/s00585-997-0471-x

Jenkins, G. S., Gaye, A. T., and Sylla, B. (2005). Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3). Geophysical Research Letters, 32(22). doi:10.1029/2005GL024225

Jin, Y., and Roy, D. P. (2005). Fire-induced albedo change and its radiative forcing at the surface in northern Australia. Geophysical Research Letters, 32(13). doi:10.1029/2005GL022822

Johnson, B. T., Heese, B., McFarlane, S. a., Chazette, P., Jones, A., and Bellouin, N. (2008). Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX. Journal of Geophysical Research, 113, D00C12. doi:10.1029/2008JD009848

Johnson, B. T., Osborne, S. R., Haywood, J. M., and Harrison, M. A. J. (2008). Aircraft measurements of biomass burning aerosol over West Africa during DABEX. Journal of Geophysical Research: Atmospheres, 113(D23). doi:10.1029/2007JD009451

Joly, M., Voldoire, A., Douville, H., Terray, P., and Royer, J. F. (2007). African monsoon teleconnections with tropical SSTs: Validation and evolution in a set of IPCC4 simulations. Climate Dynamics, 29(1), 1–20. doi:10.1007/s00382-006-0215-8

Jones, C., Mahowald, N., and Luo, C. (2004). Observational evidence of African desert dust intensification of easterly waves. Geophysical Research Letters, 31(17). doi:10.1029/2004GL020107

Jones, C., Mahowald, N., and Luo, C. (2003). The Role of Easterly Waves on African Desert Dust Transport. Journal of Climate, 16(22), 3617–3628. doi:10.1175/1520-0442(2003)016<3617:TROEWO>2.0.CO;2

Jordan, N. S., Ichoku, C., and Hoff, R. M. (2008). Estimating smoke emissions over the US Southern Great Plains using MODIS fire radiative power and aerosol observations. Atmospheric Environment, 42(9), 2007–2022. doi:10.1016/j.atmosenv.2007.12.023

Jury, M. R., and Santiago, M. J. (2010). Composite analysis of dust impacts on African easterly waves in the Moderate Resolution Imaging Spectrometer era. Journal of Geophysical Research: Atmospheres, 115(D16). doi:10.1029/2009JD013612

Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., … Kaufman, Y. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1–2), 244–262. doi:10.1016/S0034-4257(02)00076-7

Kahn, R. A., Li, W.-H., Moroney, C., Diner, D. J., Martonchik, J. V., and Fishbein, E. (2007). Aerosol source plume physical characteristics from space-based multiangle imaging. Journal of Geophysical Research, 112(D11), D11205. doi:10.1029/2006JD007647

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., … van der Werf, G. R. (2012). Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), 527–554. doi:10.5194/bg-9-527-2012

Karyampudi, V. M., Palm, S. P., Reagen, J. A., Fang, H., Grant, W. B., Hoff, R. M., … Melfi, S. H. (1999). Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bulletin of the American Meteorological Society, 80(6), 1045–1075. doi:10.1175/1520-0477(1999)080<1045:VOTSDP>2.0.CO;2

Kaufman, Y. J. (2005). Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical Research, 110(D10), D10S12. doi:10.1029/2003JD004436

Kaufman, Y. J., Koren, I., Remer, L. a, Rosenfeld, D., and Rudich, Y. (2005). The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11207–12. doi:10.1073/pnas.0505191102

Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., … Setzer, A. W. (1998). Potential global fire monitoring from EOS-MODIS. Journal of Geophysical Research, 103(D24), 32215–32238. doi:10.1029/98JD01644

Kiladis, G. N., Thorncroft, C. D., and Hall, N. M. J. (2006). Three-Dimensional Structure and Dynamics of African Easterly Waves. Part I: Observations. Journal of the Atmospheric Sciences, 63(9), 2231–2245. doi:10.1175/JAS3741.1

Kim, K. M., Lau, W. K.-M., Sud, Y. C., and Walker, G. K. (2010). Influence of aerosol-radiative forcings on the diurnal and seasonal cycles of rainfall over West Africa and Eastern Atlantic Ocean using GCM simulations. Climate Dynamics, 35(1), 115–126. doi:10.1007/s00382-010-0750-1

Konare, A., Zakey, A. S., Solmon, F., Giorgi, F., Rauscher, S., Ibrah, S., and Bi, X. (2008). A regional climate modeling study of the effect of desert dust on the West African monsoon. Journal of Geophysical Research, 113(D12). doi:10.1029/2007JD009322

Küçük, M., Kahya, E., Cengiz, T. M., and Karaca, M. (2009). North Atlantic Oscillation influences on Turkish lake levels. Hydrological Processes, 23(6), 893–906. doi:10.1002/hyp.7225

Kussul, N., Shelestov, A., and Skakun, S. (2008). Grid system for flood extent extraction from satellite images. Earth Science Informatics, 1(3–4), 105–117. doi:10.1007/s12145-008-0014-3

Labat, D. (2010). Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. Journal of Hydrology, 385(1–4), 269–278. doi:10.1016/j.jhydrol.2010.02.029

Landsea, C. W., Bell, G. D., Gray, W. M., and Goldenberg, S. B. (1998). The Extremely Active 1995 Atlantic Hurricane Season: Environmental Conditions and Verification of Seasonal Forecasts. Monthly Weather Review, 126(5), 1174–1193. doi:10.1175/1520-0493(1998)126<1174:TEAAHS>2.0.CO;2

Langmann, B., Duncan, B., Textor, C., Trentmann, J., and van der Werf, G. R. (2009). Vegetation fire emissions and their impact on air pollution and climate. Atmospheric Environment, 43(1), 107–116. doi:10.1016/j.atmosenv.2008.09.047

Langner, A., Miettinen, J., and Siegert, F. (2007). Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biology, 13(11), 2329–2340. doi:10.1111/j.1365-2486.2007.01442.x

Lare, A. R., and Nicholson, S. E. (1994). Contrasting conditions of surface water balance in wet years and dry years as a possible land surface-atmosphere feedback mechanism in the West African Sahel. Journal of Climate, 7(5), 653–668. doi:10.1175/1520-0442(1994)007<0653:CCOSWB>2.0.CO;2

Laris, P. S. (2005). Spatiotemporal problems with detecting and mapping mosaic fire regimes with coarse-resolution satellite data in savanna environments. Remote Sensing of Environment, 99(4), 412–424. doi:10.1016/j.rse.2005.09.012

Lau, K. M., Kim, K. M., Sud, Y. C., and Walker, G. K. (2009). A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Annales Geophysicae, 27(10), 4023–4037. doi:10.5194/angeo-27-4023-2009

Lavoué, D., Liousse, C., Cachier, H., Stocks, B. J., and Goldammer, J. G. (2000). Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. Journal of Geophysical Research, 105(D22), 26871–26890. doi:10.1029/2000JD900180

Le Houérou, H. N. (1996). Climate change, drought and desertification. Journal of Arid Environments, 34(2), 133–185. doi:10.1006/jare.1996.0099

Leblanc, M., Lemoalle, J., Bader, J.-C., Tweed, S., and Mofor, L. (2011). Thermal remote sensing of water under flooded vegetation: New observations of inundation patterns for the “Small” Lake Chad. Journal of Hydrology, 404(1–2), 87–98. doi:10.1016/j.jhydrol.2011.04.023

Lee, H., Jeong, S.-J., Kalashnikova, O., Tosca, M., Kim, S.-W., and Kug, J.-S. (2018). Characterization of Wildfire-Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products. Journal of Geophysical Research: Atmospheres, 123(6), 3116–3125. doi:10.1002/2017JD027415

Legates, D. R., and Willmott, C. J. (1990). Mean seasonal and spatial variability in global surface air temperature. Theoretical and Applied Climatology, 41(1–2), 11–21. doi:10.1007/BF00866198

Legates, D. R., and Willmott, C. J. (1990). Mean seasonal and spatial variability in gauge-corrected, global precipitation. International Journal of Climatology, 10(2), 111–127. doi:10.1002/joc.3370100202

Lemoalle, J., Bader, J. C., Leblanc, M., and Sedick, A. (2012). Recent changes in Lake Chad: Observations, simulations and management options (1973-2011). Global and Planetary Change, 80–81, 247–254. doi:10.1016/j.gloplacha.2011.07.004

Levy, R. C., Remer, L. a., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21), 10399–10420. doi:10.5194/acp-10-10399-2010

Li, F., Lawrence, D. M., and Bond-Lamberty, B. (2017). Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environmental Research Letters, 12(6), 069501. doi:10.1088/1748-9326/aa727f

Li, K. Y., Coe, M. T., Ramankutty, N., and De Jong, R. (2007). Modeling the hydrological impact of land-use change in West Africa. Journal of Hydrology, 337(3–4), 258–268. doi:10.1016/j.jhydrol.2007.01.038

Liousse, C., Assamoi, E., Criqui, P., Granier, C., and Rosset, R. (2014). Explosive growth in African combustion emissions from 2005 to 2030. Environmental Research Letters, 9(3), 035003. doi:10.1088/1748-9326/9/3/035003

Liousse, C., Guillaume, B., Grégoire, J. M., Mallet, M., Galy, C., Pont, V., … Van Velthoven, P. (2010). Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols. Atmospheric Chemistry and Physics, 10(19), 9631–9646. doi:10.5194/acp-10-9631-2010

Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Eddleman, H., and Cachier, H. (1996). A global three-dimensional model study of carbonaceous aerosols. Journal of Geophysical Research: Atmospheres, 101(D14), 19411–19432. doi:10.1029/95JD03426

Livingston, J. M., Redemann, J., Shinozuka, Y., Johnson, R., Russell, P. B., Zhang, Q., … Ramachandran, S. (2014). Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008. Atmospheric Chemistry and Physics, 14, 2015–2038. doi:10.5194/acp-14-2015-2014

Lopes, A., Nezry, E., Touzi, R., and Laur, H. (1990). Maximum A Posteriori Speckle Filtering and First Order Texture Models in SAR Images. In 10th Annual International Geoscience and Remote Sensing Symposium (pp. 2409–2412). IEEE. doi:10.1109/IGARSS.1990.689026

Losada, T., Rodriguez-Fonseca, B., Mohino, E., Bader, J., Janicot, S., and Mechoso, C. R. (2012). Tropical SST and Sahel rainfall: A non-stationary relationship. Geophysical Research Letters, 39(12). doi:10.1029/2012GL052423

Ma, P.-L., Zhang, K., Shi, J. J., Matsui, T., and Arking, A. (2012). Direct radiative effect of mineral dust on the development of African easterly waves in late summer, 2003-07. Journal of Applied Meteorology and Climatology, 51(12), 2090–2104. doi:10.1175/JAMC-D-11-0215.1

Mahowald, N. M., and Kiehl, L. M. (2003). Mineral aerosol and cloud interactions. Geophysical Research Letters, 30(9). doi:10.1029/2002GL016762

Martinis, S., Twele, A., and Voigt, S. (2009). Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Natural Hazards and Earth System Sciences, 9, 303–314. doi:10.5194/nhess-9-303-2009

Mason, D. C., Davenport, I. J., Neal, J. C., Schumann, G. J.-P., and Bates, P. D. (2012). Near Real-Time Flood Detection in Urban and Rural Areas Using High-Resolution Synthetic Aperture Radar Images. IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3041–3052. doi:10.1109/TGRS.2011.2178030

Mataveli, G. A. V., Silva, M. E. S., Pereira, G., da Silva Cardozo, F., Kawakubo, F. S., Bertani, G., … da Silva, V. V. (2018). Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas. Natural Hazards and Earth System Sciences, 18(1), 125–144. doi:10.5194/nhess-18-125-2018

Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., and Savenije, H. H. G. (2011). Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Physics and Chemistry of the Earth, 36(7–8), 241–252. doi:10.1016/j.pce.2010.12.009

Mazvimavi, D., and Wolski, P. (2006). Long-term variations of annual flows of the Okavango and Zambezi Rivers. Physics and Chemistry of the Earth, 31(15–16), 944–951. doi:10.1016/j.pce.2006.08.016

Mercier, F., Cazenave, A., and Maheu, C. (2002). Interannual lake level fluctuations (1993-1999) in Africa from Topex/Poseidon: connections with ocean-atmosphere interactions over the Indian Ocean. Global and Planetary Change, 32(2–3), 141–163. doi:10.1016/S0921-8181(01)00139-4

Michel, C., Liousse, C., Grégoire, J.-M., Tansey, K., Carmichael, G. R., and Woo, J.-H. (2005). Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns. Journal of Geophysical Research: Atmospheres, 110(D9). doi:10.1029/2004JD005461

Miller, R. L., and Tegen, I. (1998). Climate Response to Soil Dust Aerosols. Journal of Climate, 11(12), 3247–3267. doi:10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2

Ming, Y., and Ramaswamy, V. (2011). A Model Investigation of Aerosol-Induced Changes in Tropical Circulation. Journal of Climate, 24(19), 5125–5133. doi:10.1175/2011JCLI4108.1

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102(D14), 16663–16682. doi:10.1029/97JD00237

Moore, A. E., Cotterill, F. P. D. (Woody), Main, M. P. L., and Williams, H. B. (2008). The Zambezi River. In Large Rivers: Geomorphology and Management (pp. 311–332). doi:10.1002/9780470723722.ch15

Morisette, J. T., Giglio, L., Csiszar, I., and Justice, C. O. (2005). Validation of the MODIS active fire product over Southern Africa with ASTER data. International Journal of Remote Sensing, 26(19), 4239–4264. doi:10.1080/01431160500113526

Morisette, J. T., Giglio, L., Csiszar, I., Setzer, A., Schroeder, W., Morton, D., and Justice, C. O. (2005). Validation of MODIS Active Fire Detection Products Derived from Two Algorithms. Earth Interactions, 9(9), 1–25. doi:10.1175/EI141.1

Moron, V., and Ward, M. N. (1998). ENSO teleconnections with climate variability in the European and African sectors. Weather, 53(9), 287–295. doi:10.1002/j.1477-8696.1998.tb06403.x

Nelson, D. L., Chen, Y., Kahn, R. A., Diner, D. J., and Mazzoni, D. (2008). Example applications of the MISR INteractive eXplorer (MINX) software tool to wildfire smoke plume analyses. In W. M. Hao (Ed.), Proc. SPIE 7089, Remote Sensing of Fire: Science and Application (p. 708909). doi:10.1117/12.795087

Nelson, D., Garay, M., Kahn, R., and Dunst, B. (2013). Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX). Remote Sensing, 5(9), 4593–4628. doi:10.3390/rs5094593

Nicholson, S. E., Tucker, C. J., and Ba, M. B. (1998). Desertification, Drought, and Surface Vegetation: An Example from the West African Sahel. Bulletin of the American Meteorological Society, 79(5), 815–829. doi:10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2

Nicholson, S. E. (2001). Climatic and environmental change in Africa during the last two centuries. Climate Research, 17, 123–144. doi:10.3354/cr017123

Nicholson, S. E. (2009). A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dynamics, 32(7–8), 1155–1171. doi:10.1007/s00382-008-0514-3

Oursingbé, M., and Zhonghua, T. (2010). Recharge of the Quaternary Aquifer of Lake Chad Basin Estimated from Oxygen-18 (18O) and Tritium (3H) Isotopes. Journal of American Science, 6(9), 283–292. Retrieved from

Pereira, J. M. C., Oom, D., Pereira, P., Turkman, A. A., and Turkman, K. F. (2015). Religious Affiliation Modulates Weekly Cycles of Cropland Burning in Sub-Saharan Africa. (P. Anglewicz, Ed.)PLoS ONE, 10(9), e0139189. doi:10.1371/journal.pone.0139189

Peterson, D. (2012). Retrieval of Sub-Pixel-Based Fire Intensity and its Application for Characterizing Smoke Injection Heights and Fire Weather in North America. University of Nebraska - Lincoln. Retrieved from

Pinty, B., Verstraete, M. M., Gobron, N., Roveda, F., and Govaerts, Y. (2000). Do Man-Made Fires Affect Earth’s Surface Reflectance at Continental Scales? Eos, 81(34), 381–389. doi:10.1029/00EO00281

Polo, I., Ullmann, A., Roucou, P., and Fontaine, B. (2011). Weather Regimes in the Euro-Atlantic and Mediterranean Sector, and Relationship with West African Rainfall over the 1989–2008 Period from a Self-Organizing Maps Approach. Journal of Climate, 24(13), 3423–3432. doi:10.1175/2011JCLI3622.1

Prospero, J. M., and Carlson, T. N. (1981). Saharan air outbreaks over the tropical North Atlantic. Pure and Applied Geophysics, 119(3), 677–691. doi:10.1007/BF00878167

Pytharoulis, I., and Thorncroft, C. (1999). The Low-Level Structure of African Easterly Waves in 1995. Monthly Weather Review, 127(10), 2266–2280. doi:10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2

Rabin, S. S., Magi, B. I., Shevliakova, E., and Pacala, S. W. (2015). Quantifying regional, time-varying effects of cropland and pasture on vegetation fire. Biogeosciences, 12(22), 6591–6604. doi:10.5194/bg-12-6591-2015

Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., … Zender, C. S. (2006). The impact of boreal forest fire on climate warming. Science (New York, N.Y.), 314(5802), 1130–2. doi:10.1126/science.1132075

Randles, C. A., and Ramaswamy, V. (2010). Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: A Geophysical Fluid Dynamics Laboratory GCM sensitivity study. Atmospheric Chemistry and Physics, 10, 9819–9831. doi:10.5194/acp-10-9819-2010

Reale, O., Lau, K. M., and da Silva, A. (2011). Impact of Interactive Aerosol on the African Easterly Jet in the NASA GEOS-5 Global Forecasting System. Weather and Forecasting, 26(4), 504–519. doi:10.1175/WAF-D-10-05025.1

Reid, J. S., Eck, T. F., Christopher, S. a., Koppmann, R., Dubovik, O., Eleuterio, D. P., … Zhang, J. (2005). A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics, 5(3), 827–849. doi:10.5194/acp-5-827-2005

Reid, J. S., Hyer, E. J., Prins, E. M., Westphal, D. L., Zhang, J., Wang, J., … Hoffman, J. P. (2009). Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(3), 144–162. doi:10.1109/JSTARS.2009.2027443

Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., … Holben, B. N. (2005). The MODIS Aerosol Algorithm, Products, and Validation. Journal of the Atmospheric Sciences, 62(4), 947–973. doi:10.1175/JAS3385.1

Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D., Mattoo, S., … Holben, B. N. (2008). Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research: Atmospheres, 113(D14). doi:10.1029/2007JD009661

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., … Woollen, J. (2011). MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 24(14), 3624–3648. doi:10.1175/JCLI-D-11-00015.1

Roberts, G. J., and Wooster, M. J. (2008). Fire Detection and Fire Characterization Over Africa Using Meteosat SEVIRI. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 1200–1218. doi:10.1109/TGRS.2008.915751

Roberts, G. J., Wooster, M. J., Perry, G. L. W., Drake, N., Rebelo, L.-M., and Dipotso, F. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery. Journal of Geophysical Research, 110(D21), D21111. doi:10.1029/2005JD006018

Roberts, G., Wooster, M. J., Freeborn, P. H., and Xu, W. (2011). Integration of geostationary FRP and polar-orbiter burned area datasets for an enhanced biomass burning inventory. Remote Sensing of Environment, 115(8), 2047–2061. doi:10.1016/j.rse.2011.04.006

Román, M. O., Gatebe, C. K., Schaaf, C. B., Poudyal, R., Wang, Z., and King, M. D. (2011). Variability in surface BRDF at different spatial scales (30m-500m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements. Remote Sensing of Environment, 115(9), 2184–2203. doi:10.1016/j.rse.2011.04.012

Ropelewski, C. F., and Halpert, M. S. (1987). Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115(8), 1606–1626. doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2

Roundy, P. E., and Frank, W. M. (2004). A Climatology of Waves in the Equatorial Region. Journal of the Atmospheric Sciences, 61(17), 2105–2132. doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2

Roy, D. P., and Kumar, S. S. (2016). Multi-year MODIS active fire type classification over the Brazilian Tropical Moist Forest Biome. International Journal of Digital Earth, 1–31. doi:10.1080/17538947.2016.1208686

Sakaeda, N., Wood, R., and Rasch, P. J. (2011). Direct and semidirect aerosol effects of southern African biomass burning aerosol. Journal of Geophysical Research, 116(D12), D12205. doi:10.1029/2010JD015540

Salomon, J. G., Schaaf, C. B., Strahler, A. H., Gao, F., and Jin, Y. (2006). Validation of the MODIS Bidirectional Reflectance Distribution Function and Albedo Retrievals Using Combined Observations From the Aqua and Terra Platforms. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1555–1564. doi:10.1109/TGRS.2006.871564

Sander, N., and Jones, S. C. (2008). Diagnostic measures for assessing numerical forecasts of African Easterly Waves. Meteorologische Zeitschrift, 17(2), 209–220. doi:10.1127/0941-2948/2008/0269

Scepan, J., and Estes, J. E. (2001). Thematic Validation of Global Land Cover Data Sets – Procedures and Interpretation Methods. In IEEE 2001 International Geoscience and Remote Sensing Symposium Proceedings (Vol. 3, pp. 1119–1121). Sydney, NSW: IEEE. doi:10.1109/IGARSS.2001.976765

Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., … Roy, D. (2002). Global albedo, BRDF and nadir BRDF-adjusted reflectance products from MODIS. In IEEE International Geoscience and Remote Sensing Symposium (Vol. 83, pp. 135–148). IEEE. doi:10.1109/IGARSS.2002.1025877

Scholes, R. J., Kendall, J., and Justice, C. O. (1996). The quantity of biomass burned in southern Africa. Journal of Geophysical Research, 101(D19), 23667. doi:10.1029/96JD01623

Schroeder, W., Ruminski, M., Csiszar, I., Giglio, L., Prins, E., Schmidt, C., and Morisette, J. (2008). Validation analyses of an operational fire monitoring product: The Hazard Mapping System. International Journal of Remote Sensing, 29(20), 6059–6066. doi:10.1080/01431160802235845

Schroeder, W., Ellicott, E., Ichoku, C., Ellison, L., Dickinson, M. B., Ottmar, R. D., … Kremens, R. (2014). Integrated active fire retrievals and biomass burning emissions using complementary near-coincident ground, airborne and spaceborne sensor data. Remote Sensing of Environment, 140, 719–730. doi:10.1016/j.rse.2013.10.010

Schroeder, W., Morisette, J. T., Csiszar, I., Giglio, L., Morton, D., and Justice, C. O. (2005). Characterizing Vegetation Fire Dynamics in Brazil through Multisatellite Data: Common Trends and Practical Issues. Earth Interactions, 9(13), 1–26. doi:10.1175/EI120.1

Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., and Morton, D. (2008). Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sensing of Environment, 112(5), 2711–2726. doi:10.1016/j.rse.2008.01.005

Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J. G., … van het Bolscher, M. (2008). Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles, 22(2), 1–17. doi:10.1029/2007GB003031

Schumann, G. J.-P., Neal, J. C., Mason, D. C., and Bates, P. D. (2011). The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods. Remote Sensing of Environment, 115(10), 2536–2546. doi:10.1016/j.rse.2011.04.039

Schumann, G., Hostache, R., Puech, C., Hoffmann, L., Matgen, P., Pappenberger, F., and Pfister, L. (2007). High-resolution 3-D flood information from radar imagery for flood hazard management. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1715–1725. doi:10.1109/TGRS.2006.888103

Seiler, W., and Crutzen, P. J. (1980). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2(3), 207–247. doi:10.1007/BF00137988

Shao, G., and Wu, J. (2008). On the accuracy of landscape pattern analysis using remote sensing data. Landscape Ecology, 23(5), 505–511. doi:10.1007/s10980-008-9215-x

Singh, A., Dieye, A. M., Finco, M., Chenoweth, M. S., Fosnight, E. A., and Allotey, A. (1999). Early Warning of Selected Emerging Environmental issues in Africa: Change and Correlation from a Geographic Perspective. Nairobi, Kenya. Retrieved from

Smith, M. D., van Wilgen, B. W., Burns, C. E., Govender, N., Potgieter, A. L. F., Andelman, S., … Trollope, W. S. W. (2013). Long-term effects of fire frequency and season on herbaceous vegetation in savannas of the Kruger National Park, South Africa. Journal of Plant Ecology, 6(1), 71–83. doi:10.1093/jpe/rts014

Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., … Kukkonen, J. (2009). An operational system for the assimilation of satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmospheric Chemistry and Physics Discussions, 9, 6483–6513. doi:10.5194/acpd-9-6483-2009

Solmon, F., Elguindi, N., and Mallet, M. (2012). Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Climate Research, 52, 97–113. doi:10.3354/cr01039

Spyrou, C., Kallos, G., Mitsakou, C., Athanasiadis, P., Kalogeri, C., and Iacono, M. J. (2013). Modeling the radiative effects of desert dust on weather and regional climate. Atmospheric Chemistry and Physics, 13, 5489–5504. doi:10.5194/acp-13-5489-2013

Stier, P., Schutgens, N. A. J., Bellouin, N., Bian, H., Boucher, O., Chin, M., … Zhou, C. (2013). Host model uncertainties in aerosol radiative forcing estimates: Results from the AeroCom Prescribed intercomparison study. Atmospheric Chemistry and Physics, 13, 3245–3270. doi:10.5194/acp-13-3245-2013

Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X. (1990). The second generation regional acid deposition model chemical mechanism for regional air quality modeling. Journal of Geophysical Research, 95(D10), 16343–16367. doi:10.1029/JD095iD10p16343

Strahler, A., Muchoney, D., Borak, J., Friedl, M., Gopal, S., Lambin, E., and Moody, A. (1999). MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD): MODIS Land Cover and Land-Cover Change (5.0.).

Tarhule, A., and Lamb, P. J. (2003). Climate Research and Seasonal Forecasting for West Africans: Perceptions, Dissemination, and Use? Bulletin of the American Meteorological Society, 84(12), 1741–1759. doi:10.1175/BAMS-84-12-1741

Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., … Tie, X. (2006). Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric Chemistry and Physics, 6, 1777–1813. doi:10.5194/acp-6-1777-2006

Thorncroft, C. D., Parker, D. J., Burton, R. R., Diop, M., Ayers, J. H., Barjat, H., … Tompkins, A. M. (2003). The JET2000 Project: Aircraft Observations of the African Easterly Jet and African Easterly Waves. Bulletin of the American Meteorological Society, 84(3), 337–351. doi:10.1175/BAMS-84-3-337

Thorncroft, C. D., Hall, N. M. J., and Kiladis, G. N. (2008). Three-Dimensional Structure and Dynamics of African Easterly Waves. Part III: Genesis. Journal of the Atmospheric Sciences, 65(11), 3596–3607. doi:10.1175/2008JAS2575.1

Thorncroft, C., and Hodges, K. (2001). African Easterly Wave Variability and Its Relationship to Atlantic Tropical Cyclone Activity. Journal of Climate, 14(6), 1166–1179. doi:10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2

Torrence, C., and Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

Torrence, C., and Webster, P. J. (1998). The annual cycle of persistence in the El Nino/Southern Oscillation. Quarterly Journal of the Royal Meteorological Society, 124(550), 1985–2004. doi:10.1002/qj.49712455010

Tosca, M. G., Diner, D. J., Garay, M. J., and Kalashnikova, O. V. (2015). Human-caused fires limit convection in tropical Africa: First temporal observations and attribution. Geophysical Research Letters, 42(15), 6492–6501. doi:10.1002/2015GL065063

Tosca, M. G., Diner, D. J., Garay, M. J., and Kalashnikova, O. V. (2014). Observational evidence of fire-driven reduction of cloud fraction in tropical Africa. Journal of Geophysical Research: Atmospheres, 119. doi:10.1002/2014JD021759

Townsend, P. A., and Walsh, S. J. (1998). Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology, 21(3–4), 295–312. doi:10.1016/S0169-555X(97)00069-X

Tyner, B., and Aiyyer, A. (2012). Evolution of African Easterly Waves in Potential Vorticity Fields. Monthly Weather Review, 140(11), 3634–3652. doi:10.1175/MWR-D-11-00170.1

UNEP. (2004). Lake Chad Basin, GIWA Regional assessment 43. (M. Fortnam and J. Oguntola, Eds.). Kalmar, Sweden: University of Kalmar. Retrieved from

UNEP. (2006). Impacts on Africa’s Lakes: Case Studies of Africa’s Changing Lakes. In Africa’s lakes: Atlas of our changing environment (pp. 20–37). Retrieved from

UNEP. (2006). People and Lakes: Human Influences on Africa’s Lakes. In Africa’s lakes: Atlas of our changing environment (pp. 6–19). Retrieved from

Urbanski, S. P., Hao, W. M., and Nordgren, B. (2011). The wildland fire emission inventory: Western United States emission estimates and an evaluation of uncertainty. Atmospheric Chemistry and Physics, 11, 12973–13000. doi:10.5194/acp-11-12973-2011

Val Martin, M., Kahn, R. a., Logan, J. a., Paugam, R., Wooster, M., and Ichoku, C. (2012). Space-based observational constraints for 1-D fire smoke plume-rise models. Journal of Geophysical Research, 117(D22), D22204. doi:10.1029/2012JD018370

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano, a. F. (2006). Interannual variability of global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics Discussions, 6(2), 3175–3226. doi:10.5194/acpd-6-3175-2006

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., … van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735. doi:10.5194/acp-10-11707-2010

van Donkelaar, A., Martin, R. V., Levy, R. C., da Silva, A. M., Krzyzanowski, M., Chubarova, N. E., … Cohen, A. J. (2011). Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. Atmospheric Environment, 45(34), 6225–6232. doi:10.1016/j.atmosenv.2011.07.068

Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., and Roberts, G. J. (2009). An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. Journal of Geophysical Research, 114(D18), D18205. doi:10.1029/2008JD011188

Wang, J., and Christopher, S. A. (2006). Mesoscale modeling of Central American smoke transport to the United States: 2. Smoke radiative impact on regional surface energy budget and boundary layer evolution. Journal of Geophysical Research: Atmospheres, 111(D14). doi:10.1029/2005JD006720

Wang, J., Ge, C., Yang, Z., Hyer, E. J., Reid, J. S., Chew, B. N., … Zhang, M. (2013). Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography. Atmospheric Research, 122, 486–503. doi:10.1016/j.atmosres.2012.05.009

Wanner, W., Strahler, A. H., Hu, B., Lewis, P., Muller, J. P., Li, X., … Barnsley, M. J. (1997). Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm. Journal of Geophysical Research: Atmospheres, 102(D14), 17143–17161. doi:10.1029/96JD03295

Ward, M. N. (1998). Diagnosis and Short-Lead Time Prediction of Summer Rainfall in Tropical North Africa at Interannual and Multidecadal Timescales. Journal of Climate, 11(12), 3167–3191. doi:10.1175/1520-0442(1998)011<3167:DASLTP>2.0.CO;2

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. a., Orlando, J. J., and Soja, a. J. (2011). The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. doi:10.5194/gmd-4-625-2011

Wilcox, E. M. (2012). Direct and semi-direct radiative forcing of smoke aerosols over clouds. Atmospheric Chemistry and Physics, 12, 139–149. doi:10.5194/acp-12-139-2012

Wilcox, E. M., Lau, K. M., and Kim, K. M. (2010). A northward shift of the North Atlantic Ocean Intertropical Convergence Zone in response to summertime Saharan dust outbreaks. Geophysical Research Letters, 37(4). doi:10.1029/2009GL041774

Williams, A. P., and Funk, C. (2011). A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dynamics, 37(11–12), 2417–2435. doi:10.1007/s00382-010-0984-y

Wisnowski, J. W., Montgomery, D. C., and Simpson, J. R. (2001). A Comparative analysis of multiple outlier detection procedures in the linear regression model. Computational Statistics & Data Analysis, 36(3), 351–382. doi:10.1016/S0167-9473(00)00042-6

Wolter, K. (1987). The Southern Oscillation in Surface Circulation and Climate over the Tropical Atlantic, Eastern Pacific, and Indian Oceans as Captured by Cluster Analysis. Journal of Climate and Applied Meteorology, 26(4), 540–558. doi:10.1175/1520-0450(1987)026<0540:TSOISC>2.0.CO;2

Wooster, M. J. (2003). Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, 86(1), 83–107. doi:10.1016/S0034-4257(03)00070-1

Wooster, M. J., Roberts, G., Perry, G. L. W., and Kaufman, Y. J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research, 110(D24), D24311. doi:10.1029/2005JD006318

Xu, W., Wooster, M. J., Roberts, G., and Freeborn, P. (2010). New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sensing of Environment, 114(9), 1876–1895. doi:10.1016/j.rse.2010.03.012

Xue, Y., and Shukla, J. (1993). The influence of land surface properties on Sahel climate. Part 1: Desertification. Journal of Climate, 6(12), 2232–2245. doi:10.1175/1520-0442(1993)006<2232:TIOLSP>2.0.CO;2

Yokelson, R. J., Burling, I. R., Urbanski, S. P., Atlas, E. L., Adachi, K., Buseck, P. R., … Wold, C. E. (2011). Trace gas and particle emissions from open biomass burning in Mexico. Atmospheric Chemistry and Physics, 11, 6787–6808. doi:10.5194/acp-11-6787-2011

Yurganov, L. N., Rakitin, V., Dzhola, A., August, T., Fokeeva, E., George, M., … Strow, L. (2011). Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data. Atmospheric Chemistry and Physics, 11, 7925–7942. doi:10.5194/acp-11-7925-2011

Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., and Huang, H.-C. (2012). Near-real-time global biomass burning emissions product from geostationary satellite constellation. Journal of Geophysical Research, 117(D14), D14201. doi:10.1029/2012JD017459

Zhang, X., Kondragunta, S., Schmidt, C., and Kogan, F. (2008). Near real time monitoring of biomass burning particulate emissions (PM2.5) across contiguous United States using multiple satellite instruments. Atmospheric Environment, 42(29), 6959–6972. doi:10.1016/j.atmosenv.2008.04.060

Zuluaga, M. D., Webster, P. J., and Hoyos, C. D. (2012). Variability of aerosols in the tropical Atlantic Ocean relative to African Easterly Waves and their relationship with atmospheric and oceanic environments. Journal of Geophysical Research: Atmospheres, 117(D16). doi:10.1029/2011JD017181