Acker, J. G., and Leptoukh, G. (2007). Online Analysis Enhances Use of NASA Earth Science Data. Eos, Transactions American Geophysical Union, 88(2), 14–17. doi:10.1029/2007EO020003
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., … Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. doi:10.5194/acp-11-4039-2011
Andreae, M. O., and Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966. doi:10.1029/2000GB001382
Andres, R. J., Boden, T. A., Bréon, F. M., Ciais, P., Davis, S., Erickson, D., … Treanton, K. (2012). A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences, 9, 1845–1871. doi:10.5194/bg-9-1845-2012
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380–5552. doi:10.1002/jgrd.50171
Cahoon, D. R. J., Stocks, B. J., Levine, J. S., Cofer, W. R. I., and Pierson, J. M. (1994). Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. Journal of Geophysical Research: Atmospheres, 99(D9), 18627–18638. doi:10.1029/94JD01024
Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., … Pierce, J. R. (2013). Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67–71. doi:10.1038/nature12674
Chen, C., Dubovik, O., Henze, D. K., Lapyonak, T., Chin, M., Ducos, F., … Li, L. (2018). Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm. Atmospheric Chemistry and Physics, 18(16), 12551–12580. doi:10.5194/acp-18-12551-2018
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., … Nakajima, T. (2002). Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Journal of the Atmospheric Sciences, 59(3), 461–483. doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanré, D., and Holben, B. N. (2002). Validation of MODIS aerosol optical depth retrieval over land. Geophysical Research Letters, 29(12), 8007. doi:10.1029/2001GL013205
Chu, J.-E., Kim, K.-M., Lau, W. K. M., and Ha, K.-J. (2018). How Light-Absorbing Properties of Organic Aerosol Modify the Asian Summer Monsoon Rainfall? Journal of Geophysical Research: Atmospheres, 123(4), 2244–2255. doi:10.1002/2017JD027642
Crutzen, P. J., and Andreae, M. O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science, 250(4988), 1669–1678. doi:10.1126/science.250.4988.1669
Darmenov, A. S., and da Silva, A. (2015). The Quick Fire Emissions Dataset (QFED): Documentation of versions 2.1, 2.2 and 2.4. (R. D. Koster, Ed.) (Vol. 38). USA.
Di Giuseppe, F., Rémy, S., Pappenberger, F., and Wetterhall, F. (2018). Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations. Atmospheric Chemistry and Physics, 18(8), 5359–5370. doi:10.5194/acp-18-5359-2018
Diehl, T., Heil, A., Chin, M., Pan, X., Streets, D., Schultz, M., and Kinne, S. (2012). Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmospheric Chemistry and Physics Discussions, 12, 24895–24954. doi:10.5194/acpd-12-24895-2012
Dozier, J. (1981). A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing of Environment, 11, 221–229. doi:10.1016/0034-4257(81)90021-3
Duncan, B. N. (2003). Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. Journal of Geophysical Research, 108(D2), 4100. doi:10.1029/2002JD002378
Eisenhauer, J. G. (2003). Regression through the Origin. Teaching Statistics, 25(3), 76–80. doi:10.1111/1467-9639.00136
Ellicott, E., Vermote, E., Giglio, L., and Roberts, G. (2009). Estimating biomass consumed from fire using MODIS FRE. Geophysical Research Letters, 36(13), L13401. doi:10.1029/2009GL038581
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., … van Dorland, R. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In T. Nakajima and V. Ramanathan (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 129–234). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:39002468
Freeborn, P. H., Wooster, M. J., and Roberts, G. (2011). Addressing the spatiotemporal sampling design of MODIS to provide estimates of the fire radiative energy emitted from Africa. Remote Sensing of Environment, 115(2), 475–489. doi:10.1016/j.rse.2010.09.017
Freeborn, P. H., Wooster, M. J., Roberts, G., Malamud, B. D., and Xu, W. (2009). Development of a virtual active fire product for Africa through a synthesis of geostationary and polar orbiting satellite data. Remote Sensing of Environment, 113(8), 1700–1711. doi:10.1016/j.rse.2009.03.013
Freitas, S. R., Longo, K. M., and Andreae, M. O. (2006). Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants. Geophysical Research Letters, 33(17). doi:10.1029/2006GL026608
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168–182. doi:10.1016/j.rse.2009.08.016
Fu, D., Xia, X., Duan, M., Zhang, X., Li, X., Wang, J., and Liu, J. (2018). Mapping nighttime PM2.5 from VIIRS DNB using a linear mixed-effect model. Atmospheric Environment, 178(January), 214–222. doi:10.1016/j.atmosenv.2018.02.001
Fu, Y., Li, R., Huang, J., Bergeron, Y., Fu, Y., Wang, Y., and Gao, Z. (2018). Satellite-Observed Impacts of Wildfires on Regional Atmosphere Composition and the Shortwave Radiative Forcing: A Multiple Case Study. Journal of Geophysical Research: Atmospheres, 123(15), 8326–8343. doi:10.1029/2017JD027927
Gatebe, C. K., Varnai, T., Poudyal, R., Ichoku, C., and King, M. D. (2012). Taking the pulse of pyrocumulus clouds. Atmospheric Environment, 52, 121–130. doi:10.1016/j.atmosenv.2012.01.045
Generoso, S., Bey, I., Attié, J.-L., and Bréon, F.-M. (2007). A satellite- and model-based assessment of the 2003 Russian fires: Impact on the Arctic region. Journal of Geophysical Research: Atmospheres, 112(D15). doi:10.1029/2006JD008344
Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Kasibhatla, P. (2006). Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics, 6(4), 957–974. doi:10.5194/acp-6-957-2006
Giglio, L. (2007). Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sensing of Environment, 108(4), 407–421. doi:10.1016/j.rse.2006.11.018
Giglio, L. (2013). MODIS Collection 5 Active Fire Product User’s Guide (2.5.). Retrieved from http://modis-fire.umd.edu/files/MODIS_Fire_Users_Guide_2.5.pdf
Giglio, L., Csiszar, I., Restás, Á., Morisette, J. T., Schroeder, W., Morton, D., and Justice, C. O. (2008). Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sensing of Environment, 112(6), 3055–3063. doi:10.1016/j.rse.2008.03.003
Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J. (2003). An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment, 87(2–3), 273–282. doi:10.1016/S0034-4257(03)00184-6
Giglio, L., Schroeder, W., and Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. doi:10.1016/j.rse.2016.02.054
Gordon, H., Field, P. R., Abel, S. J., Dalvi, M., Grosvenor, D. P., Hill, A. A., … Carslaw, K. S. (2018). Large simulated radiative effects of smoke in the south-east Atlantic. Atmospheric Chemistry and Physics, 18(20), 15261–15289. doi:10.5194/acp-18-15261-2018
Govaerts, Y., Wooster, M., Freeborn, P., Lattanzio, A., and Roberts, G. (2010). Algorithm Theoretical Basis Document for MSG SEVIRI Fire Radiative Power (FRP) Characterisation (2.6.).
Govaerts, Y., Wooster, M., Lattanzio, A., Roberts, G., Freeborn, P., Xu, W., and Trigo, I. (2008). The operational MSG/SEVIRI fire radiative power product generated at the LAND SAF. In Proceedings of 2008 EUMETSAT Meteorological Satellite Conference. Darmstadt, Germany: EUMETSAT.
Govaerts, Y., Wooster, M., Lattanzio, A., and Roberts, G. (2008). MSG SEVIRI Fire Radiative Power (FRP) Characterisation Algorithm Theoretical Basis Document (2.1.). Darmstadt, Germany.
Hao, W. M., and Liu, M.-H. (1994). Spatial and temporal distribution of tropical biomass burning. Global Biogeochemical Cycles, 8(4), 495–503. doi:10.1029/94GB02086
Heil, A., Kaiser, J. W., van der Werf, G. R., Wooster, M. J., Schultz, M. G., and van der Gon, H. D. (2010). Assessment of the Real-Time Fire Emissions (GFASv0) by MACC. Reading, England. Retrieved from http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/601-700/tm628.pdf
Henderson, S. B., Burkholder, B., Jackson, P. L., Brauer, M., and Ichoku, C. (2008). Use of MODIS products to simplify and evaluate a forest fire plume dispersion model for PM10 exposure assessment. Atmospheric Environment, 42(36), 8524–8532. doi:10.1016/j.atmosenv.2008.05.008
Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., Granier, C., and Simon, M. (2004). Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. Journal of Geophysical Research: Atmospheres, 109(D14). doi:10.1029/2003JD003666
Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., … Zibordi, G. (2001). An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research: Atmospheres, 106(D11), 12067–12097. doi:10.1029/2001JD900014
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., … Smirnov, A. (1998). AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sensing of Environment, 66(1). doi:10.1016/S0034-4257(98)00031-5
Hyer, E. (2009). FLAMBE Biomass Burning Emissions: A Four-Year Hourly Dataset 2005-2008.
Hyer, E. J., Reid, J. S., Prins, E. M., Hoffman, J. P., Schmidt, C. C., Miettinen, J. I., and Giglio, L. (2013). Patterns of fire activity over Indonesia and Malaysia from polar and geostationary satellite observations. Atmospheric Research, 122, 504–519. doi:10.1016/j.atmosres.2012.06.011
Ichoku, C., Kaufman, Y. ., Remer, L. ., and Levy, R. (2004). Global aerosol remote sensing from MODIS. Advances in Space Research, 34(4), 820–827. doi:10.1016/j.asr.2003.07.071
Ichoku, C. (2003). MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000. Journal of Geophysical Research, 108(D13), 8499. doi:10.1029/2002JD002366
Ichoku, C. (2005). Quantitative evaluation and intercomparison of morning and afternoon Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol measurements from Terra and Aqua. Journal of Geophysical Research, 110(D10), D10S03. doi:10.1029/2004JD004987
Ichoku, C., Giglio, L., Wooster, M. J., and Remer, L. A. (2008). Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, 112(6), 2950–2962. doi:10.1016/j.rse.2008.02.009
Ichoku, C., Kahn, R., and Chin, M. (2012). Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmospheric Research, 111, 1–28. doi:10.1016/j.atmosres.2012.03.007
Ichoku, C., Levy, R., Kaufman, Y. J., Remer, L. A., Li, R.-R., Martins, V. J., … Pietras, C. (2002). Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor. Journal of Geophysical Research, 107(D13), 4179. doi:10.1029/2001JD001302
Ito, A., and Penner, J. E. (2004). Global estimates of biomass burning emissions based on satellite imagery for the year 2000. Journal of Geophysical Research: Atmospheres, 109(D14). doi:10.1029/2003JD004423
Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., … Kaufman, Y. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1–2), 244–262. doi:10.1016/S0034-4257(02)00076-7
Kahn, R. A., Nelson, D. L., Garay, M. J., Levy, R. C., Bull, M. A., Diner, D. J., … Remer, L. A. (2009). MISR Aerosol Product Attributes and Statistical Comparisons With MODIS. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 4095–4114. doi:10.1109/TGRS.2009.2023115
Kahn, R. A., Li, W.-H., Moroney, C., Diner, D. J., Martonchik, J. V., and Fishbein, E. (2007). Aerosol source plume physical characteristics from space-based multiangle imaging. Journal of Geophysical Research, 112(D11), D11205. doi:10.1029/2006JD007647
Kaiser, J. W., Flemming, J., Schultz, M. G., Suttie, M., and Wooster, M. J. (2009). The MACC Global Fire Assimilation System: First Emission Products (GFASv0). Reading, England. Retrieved from http://www.gmes-atmosphere.eu/about/project_structure/input_data/d_fire/lit/kaiser09mgf.pdf
Kaiser, J. W., Suttie, M., Flemming, J., Morcrette, J.-J., Boucher, O., Schultz, M. G., … Yamasoe, M. A. (2009). Global Real-time Fire Emission Estimates Based on Space-borne Fire Radiative Power Observations. In T. Nakajima and M. A. Yamasoe (Eds.), AIP Conference Proceedings (pp. 645–648). American Institute of Physics. doi:10.1063/1.3117069
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., … van der Werf, G. R. (2012). Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), 527–554. doi:10.5194/bg-9-527-2012
Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., … Setzer, A. W. (1998). Potential global fire monitoring from EOS-MODIS. Journal of Geophysical Research, 103(D24), 32215–32238. doi:10.1029/98JD01644
Kaufman, Y. J., Tucker, C. J., and Fung, I. (1990). Remote sensing of biomass burning in the tropics. Journal of Geophysical Research, 95(D7), 9927. doi:10.1029/JD095iD07p09927
Langmann, B., Duncan, B., Textor, C., Trentmann, J., and van der Werf, G. R. (2009). Vegetation fire emissions and their impact on air pollution and climate. Atmospheric Environment, 43(1), 107–116. doi:10.1016/j.atmosenv.2008.09.047
Lattanzio, A., Wooster, M., and Freeborn, P. (2010). Product User Manual Fire Radiative Power (1.5.).
Lavoué, D., Liousse, C., Cachier, H., Stocks, B. J., and Goldammer, J. G. (2000). Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. Journal of Geophysical Research, 105(D22), 26871–26890. doi:10.1029/2000JD900180
Levy, R. C., Remer, L. a., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21), 10399–10420. doi:10.5194/acp-10-10399-2010
Liousse, C., Guillaume, B., Grégoire, J. M., Mallet, M., Galy, C., Pont, V., … Van Velthoven, P. (2010). Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols. Atmospheric Chemistry and Physics, 10(19), 9631–9646. doi:10.5194/acp-10-9631-2010
Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Eddleman, H., and Cachier, H. (1996). A global three-dimensional model study of carbonaceous aerosols. Journal of Geophysical Research: Atmospheres, 101(D14), 19411–19432. doi:10.1029/95JD03426
Livingston, J. M., Redemann, J., Shinozuka, Y., Johnson, R., Russell, P. B., Zhang, Q., … Ramachandran, S. (2014). Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008. Atmospheric Chemistry and Physics, 14, 2015–2038. doi:10.5194/acp-14-2015-2014
Lobert, J. M., and Warnatz, J. (1993). Emissions from the combustion process in vegetation. In P. J. Crutzen and J. G. Goldammer (Eds.), Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires (pp. 15–37). New York: John Wiley & Sons Ltd.
McNaughton, S. J., Stronach, N. R. H., and Georgiadis, N. J. (1998). Combustion in Natural Fires and Global Emissions Budgets. Ecological Applications, 8(2), 464–468. doi:10.1890/1051-0761(1998)008[0464:CINFAG]2.0.CO;2
Michel, C., Liousse, C., Grégoire, J.-M., Tansey, K., Carmichael, G. R., and Woo, J.-H. (2005). Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns. Journal of Geophysical Research: Atmospheres, 110(D9). doi:10.1029/2004JD005461
Morisette, J. T., Giglio, L., Csiszar, I., and Justice, C. O. (2005). Validation of the MODIS active fire product over Southern Africa with ASTER data. International Journal of Remote Sensing, 26(19), 4239–4264. doi:10.1080/01431160500113526
Morisette, J. T., Giglio, L., Csiszar, I., Setzer, A., Schroeder, W., Morton, D., and Justice, C. O. (2005). Validation of MODIS Active Fire Detection Products Derived from Two Algorithms. Earth Interactions, 9(9), 1–25. doi:10.1175/EI141.1
Mota, B., and Wooster, M. J. (2018). A new top-down approach for directly estimating biomass burning emissions and fuel consumption rates and totals from geostationary satellite fire radiative power (FRP). Remote Sensing of Environment, 206(February 2017), 45–62. doi:10.1016/j.rse.2017.12.016
Mu, M., Randerson, J. T., van der Werf, G. R., Giglio, L., Kasibhatla, P., Morton, D., … Wennberg, P. O. (2011). Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. Journal of Geophysical Research, 116(D24), D24303. doi:10.1029/2011JD016245
Nelson, D. L., Chen, Y., Kahn, R. A., Diner, D. J., and Mazzoni, D. (2008). Example applications of the MISR INteractive eXplorer (MINX) software tool to wildfire smoke plume analyses. In W. M. Hao (Ed.), Proc. SPIE 7089, Remote Sensing of Fire: Science and Application (p. 708909). doi:10.1117/12.795087
Nelson, D., Garay, M., Kahn, R., and Dunst, B. (2013). Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX). Remote Sensing, 5(9), 4593–4628. doi:10.3390/rs5094593
Nicolae, V., Dandocsi, A., Marmureanu, L., and Talianu, C. (2018). Biomass burning aerosol over Romania using dispersion model and Calipso data. In D. Nicolae, A. Makoto, A. Vassilis, D. Balis, A. Behrendt, A. Comeron, … U. Wandinger (Eds.), EPJ Web of Conferences (Vol. 176, p. 04012). doi:10.1051/epjconf/201817604012
Peterson, D. (2012). Retrieval of Sub-Pixel-Based Fire Intensity and its Application for Characterizing Smoke Injection Heights and Fire Weather in North America. University of Nebraska - Lincoln. Retrieved from http://digitalcommons.unl.edu/geoscidiss/30/
Peterson, D., Hyer, E., and Wang, J. (2013). A short-term predictor of satellite-observed fire activity in the North American boreal forest: Toward improving the prediction of smoke emissions. Atmospheric Environment, 71, 304–310. doi:10.1016/j.atmosenv.2013.01.052
Petrenko, M., Kahn, R., Chin, M., Soja, A., and Kucsera, T. (2012). The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART. Journal of Geophysical Research, 117(D18), D18212. doi:10.1029/2012JD017870
Prins, E. M., McNamara, D., and Schmidt, C. C. (2004). Global Geostationary Fire Monitoring System. In 13th Conference on Satellite Meteorology and Oceanography, 84th AMS Annual Meeting. Norfolk, VA: American Meteorological Society. Retrieved from https://ams.confex.com/ams/pdfpapers/78889.pdf
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., … Zender, C. S. (2006). The impact of boreal forest fire on climate warming. Science (New York, N.Y.), 314(5802), 1130–2. doi:10.1126/science.1132075
Reid, J. S., Eck, T. F., Christopher, S. a., Koppmann, R., Dubovik, O., Eleuterio, D. P., … Zhang, J. (2005). A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics, 5(3), 827–849. doi:10.5194/acp-5-827-2005
Reid, J. S., Hyer, E. J., Prins, E. M., Westphal, D. L., Zhang, J., Wang, J., … Hoffman, J. P. (2009). Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(3), 144–162. doi:10.1109/JSTARS.2009.2027443
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., … Holben, B. N. (2005). The MODIS Aerosol Algorithm, Products, and Validation. Journal of the Atmospheric Sciences, 62(4), 947–973. doi:10.1175/JAS3385.1
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., … Woollen, J. (2011). MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 24(14), 3624–3648. doi:10.1175/JCLI-D-11-00015.1
Roberts, G. J., and Wooster, M. J. (2008). Fire Detection and Fire Characterization Over Africa Using Meteosat SEVIRI. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 1200–1218. doi:10.1109/TGRS.2008.915751
Roberts, G. J., Wooster, M. J., Perry, G. L. W., Drake, N., Rebelo, L.-M., and Dipotso, F. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery. Journal of Geophysical Research, 110(D21), D21111. doi:10.1029/2005JD006018
Roberts, G., Wooster, M. J., Freeborn, P. H., and Xu, W. (2011). Integration of geostationary FRP and polar-orbiter burned area datasets for an enhanced biomass burning inventory. Remote Sensing of Environment, 115(8), 2047–2061. doi:10.1016/j.rse.2011.04.006
Roberts, G., and Wooster, M. (2008). SEVIRI Fire Radiative Power (FRP) Dataset. London, UK. Retrieved from http://cedadocs.badc.rl.ac.uk/770/1/SEVIRI_FRP_documentdesc.pdf
Schroeder, W., Ruminski, M., Csiszar, I., Giglio, L., Prins, E., Schmidt, C., and Morisette, J. (2008). Validation analyses of an operational fire monitoring product: The Hazard Mapping System. International Journal of Remote Sensing, 29(20), 6059–6066. doi:10.1080/01431160802235845
Schroeder, W., Morisette, J. T., Csiszar, I., Giglio, L., Morton, D., and Justice, C. O. (2005). Characterizing Vegetation Fire Dynamics in Brazil through Multisatellite Data: Common Trends and Practical Issues. Earth Interactions, 9(13), 1–26. doi:10.1175/EI120.1
Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., and Morton, D. (2008). Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sensing of Environment, 112(5), 2711–2726. doi:10.1016/j.rse.2008.01.005
Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J. G., … van het Bolscher, M. (2008). Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles, 22(2), 1–17. doi:10.1029/2007GB003031
Seiler, W., and Crutzen, P. J. (1980). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2(3), 207–247. doi:10.1007/BF00137988
Soares, J., Sofiev, M., and Hakkarainen, J. (2015). Uncertainties of wild-land fires emission in AQMEII phase 2 case study. Atmospheric Environment, 115, 361–370. doi:10.1016/j.atmosenv.2015.01.068
Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., … Kukkonen, J. (2009). An operational system for the assimilation of satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmospheric Chemistry and Physics Discussions, 9, 6483–6513. doi:10.5194/acpd-9-6483-2009
Solomos, S., Amiridis, V., Zanis, P., Gerasopoulos, E., Sofiou, F. I., Herekakis, T., … Kontoes, C. (2015). Smoke dispersion modeling over complex terrain using high resolution meteorological data and satellite observations – The FireHub platform. Atmospheric Environment, 119, 348–361. doi:10.1016/j.atmosenv.2015.08.066
Sreenivas, G., Mahesh, P., Subin, J., Kanchana, A. L., Rao, P. V. N., and Dadhwal, V. K. (2016). Influence of Meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a suburban site of India. Atmospheric Chemistry and Physics, 16(6), 3953–3967. doi:10.5194/acp-16-3953-2016
Strand, T., Gullett, B., Urbanski, S., O’Neill, S., Potter, B., Aurell, J., … Rorig, M. (2016). Grassland and forest understorey biomass emissions from prescribed fires in the south-eastern United States – RxCADRE 2012. International Journal of Wildland Fire, 25(1), 102–113. doi:10.1071/WF14166
Stroppiana, D., Brivio, P. a., Grégoire, J.-M., Liousse, C., Guillaume, B., Granier, C., … Pétron, G. (2010). Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data. Atmospheric Chemistry and Physics, 10(24), 12173–12189. doi:10.5194/acp-10-12173-2010
Urbanski, S. P., Hao, W. M., and Nordgren, B. (2011). The wildland fire emission inventory: Western United States emission estimates and an evaluation of uncertainty. Atmospheric Chemistry and Physics, 11, 12973–13000. doi:10.5194/acp-11-12973-2011
Vadrevu, K., and Lasko, K. (2018). Intercomparison of MODIS AQUA and VIIRS I-Band Fires and Emissions in an Agricultural Landscape—Implications for Air Pollution Research. Remote Sensing, 10(7), 978. doi:10.3390/rs10070978
Val Martin, M., Logan, J. a., Kahn, R. a., Leung, F.-Y., Nelson, D. L., and Diner, D. J. (2010). Smoke injection heights from fires in North America: analysis of 5 years of satellite observations. Atmospheric Chemistry and Physics, 10(4), 1491–1510. doi:10.5194/acp-10-1491-2010
Val Martin, M., Kahn, R. a., Logan, J. a., Paugam, R., Wooster, M., and Ichoku, C. (2012). Space-based observational constraints for 1-D fire smoke plume-rise models. Journal of Geophysical Research, 117(D22), D22204. doi:10.1029/2012JD018370
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano, a. F. (2006). Interannual variability of global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics Discussions, 6(2), 3175–3226. doi:10.5194/acpd-6-3175-2006
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., … van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735. doi:10.5194/acp-10-11707-2010
van der Werf, G. R., Randerson, J. T., Collatz, G. J., Giglio, L., Kasibhatla, P. S., Arellano, A. F., … Kasischke, E. S. (2004). Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science (New York, N.Y.), 303(5654), 73–6. doi:10.1126/science.1090753
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., … Kasibhatla, P. S. (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9(2), 697–720. doi:10.5194/essd-9-697-2017
van Donkelaar, A., Martin, R. V., Levy, R. C., da Silva, A. M., Krzyzanowski, M., Chubarova, N. E., … Cohen, A. J. (2011). Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. Atmospheric Environment, 45(34), 6225–6232. doi:10.1016/j.atmosenv.2011.07.068
van Leeuwen, T. T., van der Werf, G. R., Hoffmann, A. A., Detmers, R. G., Rücker, G., French, N. H. F., … Trollope, W. S. W. (2014). Biomass burning fuel consumption rates: a field measurement database. Biogeosciences, 11(24), 7305–7329. doi:10.5194/bg-11-7305-2014
Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., and Roberts, G. J. (2009). An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. Journal of Geophysical Research, 114(D18), D18205. doi:10.1029/2008JD011188
Ward, D. E., Susott, R. A., Kauffman, J. B., Babbitt, R. E., Cummings, D. L., Dias, B., … Setzer, A. W. (1992). Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment. Journal of Geophysical Research, 97(D13), 14601. doi:10.1029/92JD01218
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. a., Orlando, J. J., and Soja, a. J. (2011). The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. doi:10.5194/gmd-4-625-2011
Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X., … Wynne, K. K. (2006). Estimating emissions from fires in North America for air quality modeling. Atmospheric Environment, 40(19), 3419–3432. doi:10.1016/j.atmosenv.2006.02.010
Wisnowski, J. W., Montgomery, D. C., and Simpson, J. R. (2001). A Comparative analysis of multiple outlier detection procedures in the linear regression model. Computational Statistics & Data Analysis, 36(3), 351–382. doi:10.1016/S0167-9473(00)00042-6
Wooster, M. J. (2003). Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, 86(1), 83–107. doi:10.1016/S0034-4257(03)00070-1
Wooster, M. J. (2002). Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophysical Research Letters, 29(21), 2027. doi:10.1029/2002GL015487
Wooster, M. J., Roberts, G., Perry, G. L. W., and Kaufman, Y. J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research, 110(D24), D24311. doi:10.1029/2005JD006318
Xu, W., Wooster, M. J., Roberts, G., and Freeborn, P. (2010). New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sensing of Environment, 114(9), 1876–1895. doi:10.1016/j.rse.2010.03.012
Yang, Z., Wang, J., Ichoku, C., Hyer, E., and Zeng, J. (2013). Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub-Saharan African region. Journal of Geophysical Research: Atmospheres, 118(21), 12139–12157. doi:10.1002/2013JD020644
Yokelson, R. J., Burling, I. R., Urbanski, S. P., Atlas, E. L., Adachi, K., Buseck, P. R., … Wold, C. E. (2011). Trace gas and particle emissions from open biomass burning in Mexico. Atmospheric Chemistry and Physics, 11, 6787–6808. doi:10.5194/acp-11-6787-2011
Yurganov, L. N., Rakitin, V., Dzhola, A., August, T., Fokeeva, E., George, M., … Strow, L. (2011). Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data. Atmospheric Chemistry and Physics, 11, 7925–7942. doi:10.5194/acp-11-7925-2011
Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., and Huang, H.-C. (2012). Near-real-time global biomass burning emissions product from geostationary satellite constellation. Journal of Geophysical Research, 117(D14), D14201. doi:10.1029/2012JD017459
Zhang, X., Kondragunta, S., Schmidt, C., and Kogan, F. (2008). Near real time monitoring of biomass burning particulate emissions (PM2.5) across contiguous United States using multiple satellite instruments. Atmospheric Environment, 42(29), 6959–6972. doi:10.1016/j.atmosenv.2008.04.060