NASA Logo, National Aeronautics and Space Administration

National Aeronautics and Space Administration

Goddard Space Flight Center

ALT

Fire Energetics and Emissions Research

FEER Updates

RSS

20.Feb.2019 - VIIRS active fire data available as VNPFIRE product.

12.Feb.2019 - FEERv1.0 Emissions processing stream fixed.

08.Feb.2019 - MODFIRE processing stream fixed.

31.Jul.2018 - Suomi-NPP VIIRS fire data added to Africa Explorer.

FRP-Based Smoke Emission Coefficients

Overview

Smoke emissions have long been quantified after-the-fact by multiplication of burned area, biomass density, fraction of above-ground biomass, and burn efficiency. A new algorithm has been developed, as originally suggested in Ichoku & Kaufman (2005), for use in calculating smoke emissions directly from fire radiative power (FRP) measurements such that the latency and uncertainty associated with the previously listed variables are avoided. Application of this new, simpler and more direct algorithm is automatic, based only on a fire's FRP measurement and a predetermined coefficient of smoke emission for a given location. Deriving accurate coefficients of smoke emission is therefore critical to the success of this algorithm. In the aforementioned paper, an initial effort was made to derive coefficients of smoke emission for different large regions of interest using calculations of smoke emission rates from MODIS FRP and aerosol optical depth (AOD) measurements. Further work has resulted in a first version of a 1×1° resolution map of these coefficients, called the FEER Ce v1.0 product. Emissions can be calculated for a given region and time period (with a sufficient time-step) as the product between the time-integrated FRP and smoke emission coefficients.

The Algorithm

The basic premise fueling the creation of this algorithm is that smoke emission from a fire can be determined directly from its FRP and a coefficient of emission, Ce, which can be determined from a linear relationship between FRP and the rate of smoke emission, Rsa. Rsa is calculated as the total smoke aerosol mass, Msa, over the time, T, it takes the smoke to clear the designated area. Msa is estimated from surrounding AOD550 values from the MODIS 10km MOD04_L2 product, and T is estimated using pixel geometry and 850mbar wind speed data from MERRA’s 1.25×1.25° resolution “inst3_3d_asm_Cp” product. The updated algorithm is described in detail in Ichoku & Ellison (2013), which expands on its predecessor by using wind direction as well to more accurately determine AOD associated with the plume, and to determine if there is an influx of smoke generated elsewhere into the vicinity of the fire under consideration. Wind magnitudes are also used in conjunction with relative fire locations within an aerosol pixel to improve values of T. Rsa and preceding parameters are also calculated on a per-pixel basis and therefore theoretically reduce the uncertainty in estimating these parameters on a much larger scale.

Data Product

The coefficient of smoke emission data product has been finalized and released as of August 22, 2013. The data product is available under the Data section. See the Presentations section below for some initial plots showing the extent and look of this product and an example of its application to deriving smoke emissions over northern sub-Saharan Africa.

Supporting Documents

AGU 2014 Fall Meeting
Evaluation of the FEERv1.0 Global Top-Down Biomass Burning Emissions Inventory over Africa
[poster]

AGU 2012 Fall Meeting
An Overview of the New FEER Smoke Emissions Product and Its Applications over Northern Sub-Saharan Africa
[poster]

EPA 2012 International Emission Inventory Conference
Derivation of a New Smoke Emissions Inventory using Remote Sensing, and Its Implications for Near Real-Time Air Quality Applications
[poster, proceedings paper]

AGU 2011 Fall Meeting
Enhancements in Deriving Smoke Emission Coefficients from Fire Radiative Power Measurements
[poster]

Publications

Ellison, L., and Ichoku, C. (2013). FEER Coefficient of Emission (Ce) Product User Manual (User Guide). (L. Ellison and C. Ichoku, Eds.) (1.0.). Retrieved from http://feer.gsfc.nasa.gov/data/emissions/

Ellison, L., and Ichoku, C. (2015). FEER Coefficient of Emission (Ce) Product User Manual (User Guides). (L. Ellison, Ed.) (1.0rA.). Retrieved from http://feer.gsfc.nasa.gov/data/emissions/

Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. a., Nordgren, B. L., Baker, S. P., and Ichoku, C. (2008). Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires. Journal of Geophysical Research, 113(D1), D01301. doi:10.1029/2007JD008679

Henderson, S. B., Ichoku, C., Burkholder, B. J., Brauer, M., and Jackson, P. L. (2010). The validity and utility of MODIS data for simple estimation of area burned and aerosols emitted by wildfire events. International Journal of Wildland Fire, 19(7), 844. doi:10.1071/WF09027

Ichoku, C., and Ellison, L. (2014). Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmospheric Chemistry and Physics, 14(13), 6643–6667. doi:10.5194/acp-14-6643-2014

Ichoku, C., Kaufman, Y. J., and Habib, S. (2004). Application of MODIS-derived active fire radiative energy to fire disaster and smoke pollution monitoring. In IEEE International IEEE International IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS ’04. Proceedings. 2004 (Vol. 2, pp. 1113–1115). IEEE. doi:10.1109/IGARSS.2004.1368608

Ichoku, C., and Kaufman, Y. J. (2005). A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2636–2649. doi:10.1109/TGRS.2005.857328

Ichoku, C., Martins, J. V., Kaufman, Y. J., Wooster, M. J., Freeborn, P. H., Hao, W. M., … Nordgren, B. L. (2008). Laboratory investigation of fire radiative energy and smoke aerosol emissions. Journal of Geophysical Research, 113(D14), D14S09. doi:10.1029/2007JD009659

Jordan, N. S., Ichoku, C., and Hoff, R. M. (2008). Estimating smoke emissions over the US Southern Great Plains using MODIS fire radiative power and aerosol observations. Atmospheric Environment, 42(9), 2007–2022. doi:10.1016/j.atmosenv.2007.12.023

Kaufman, Y. J., Ichoku, C., Giglio, L., Korontzi, S., Chu, D. a., Hao, W. M., … Justice, C. O. (2003). Fire and smoke observed from the Earth Observing System MODIS instrument--products, validation, and operational use. International Journal of Remote Sensing, 24(8), 1765–1781. doi:10.1080/01431160210144741

Schroeder, W., Ellicott, E., Ichoku, C., Ellison, L., Dickinson, M. B., Ottmar, R. D., … Kremens, R. (2014). Integrated active fire retrievals and biomass burning emissions using complementary near-coincident ground, airborne and spaceborne sensor data. Remote Sensing of Environment, 140, 719–730. doi:10.1016/j.rse.2013.10.010

Wang, J., Yue, Y., Wang, Y., Ichoku, C., Ellison, L., and Zeng, J. (2018). Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region. Journal of Geophysical Research: Atmospheres, 123(1), 507–528. doi:10.1002/2017JD026840


References

Acker, J. G., and Leptoukh, G. (2007). Online Analysis Enhances Use of NASA Earth Science Data. Eos, Transactions American Geophysical Union, 88(2), 14–17. doi:10.1029/2007EO020003

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., … Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. doi:10.5194/acp-11-4039-2011

Andreae, M. O., and Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966. doi:10.1029/2000GB001382

Andres, R. J., Boden, T. A., Bréon, F. M., Ciais, P., Davis, S., Erickson, D., … Treanton, K. (2012). A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences, 9, 1845–1871. doi:10.5194/bg-9-1845-2012

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380–5552. doi:10.1002/jgrd.50171

Cahoon, D. R. J., Stocks, B. J., Levine, J. S., Cofer, W. R. I., and Pierson, J. M. (1994). Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. Journal of Geophysical Research: Atmospheres, 99(D9), 18627–18638. doi:10.1029/94JD01024

Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., … Pierce, J. R. (2013). Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67–71. doi:10.1038/nature12674

Chen, C., Dubovik, O., Henze, D. K., Lapyonak, T., Chin, M., Ducos, F., … Li, L. (2018). Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm. Atmospheric Chemistry and Physics, 18(16), 12551–12580. doi:10.5194/acp-18-12551-2018

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., … Nakajima, T. (2002). Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Journal of the Atmospheric Sciences, 59(3), 461–483. doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2

Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanré, D., and Holben, B. N. (2002). Validation of MODIS aerosol optical depth retrieval over land. Geophysical Research Letters, 29(12), 8007. doi:10.1029/2001GL013205

Chu, J.-E., Kim, K.-M., Lau, W. K. M., and Ha, K.-J. (2018). How Light-Absorbing Properties of Organic Aerosol Modify the Asian Summer Monsoon Rainfall? Journal of Geophysical Research: Atmospheres, 123(4), 2244–2255. doi:10.1002/2017JD027642

Crutzen, P. J., and Andreae, M. O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science, 250(4988), 1669–1678. doi:10.1126/science.250.4988.1669

Darmenov, A. S., and da Silva, A. (2015). The Quick Fire Emissions Dataset (QFED): Documentation of versions 2.1, 2.2 and 2.4. (R. D. Koster, Ed.) (Vol. 38). USA.

Di Giuseppe, F., Rémy, S., Pappenberger, F., and Wetterhall, F. (2018). Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations. Atmospheric Chemistry and Physics, 18(8), 5359–5370. doi:10.5194/acp-18-5359-2018

Diehl, T., Heil, A., Chin, M., Pan, X., Streets, D., Schultz, M., and Kinne, S. (2012). Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmospheric Chemistry and Physics Discussions, 12, 24895–24954. doi:10.5194/acpd-12-24895-2012

Dozier, J. (1981). A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing of Environment, 11, 221–229. doi:10.1016/0034-4257(81)90021-3

Duncan, B. N. (2003). Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. Journal of Geophysical Research, 108(D2), 4100. doi:10.1029/2002JD002378

Eisenhauer, J. G. (2003). Regression through the Origin. Teaching Statistics, 25(3), 76–80. doi:10.1111/1467-9639.00136

Ellicott, E., Vermote, E., Giglio, L., and Roberts, G. (2009). Estimating biomass consumed from fire using MODIS FRE. Geophysical Research Letters, 36(13), L13401. doi:10.1029/2009GL038581

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., … van Dorland, R. (2007). Changes in Atmospheric Constituents and in Radiative Forcing. In T. Nakajima and V. Ramanathan (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 129–234). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:39002468

Freeborn, P. H., Wooster, M. J., and Roberts, G. (2011). Addressing the spatiotemporal sampling design of MODIS to provide estimates of the fire radiative energy emitted from Africa. Remote Sensing of Environment, 115(2), 475–489. doi:10.1016/j.rse.2010.09.017

Freeborn, P. H., Wooster, M. J., Roberts, G., Malamud, B. D., and Xu, W. (2009). Development of a virtual active fire product for Africa through a synthesis of geostationary and polar orbiting satellite data. Remote Sensing of Environment, 113(8), 1700–1711. doi:10.1016/j.rse.2009.03.013

Freitas, S. R., Longo, K. M., and Andreae, M. O. (2006). Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants. Geophysical Research Letters, 33(17). doi:10.1029/2006GL026608

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168–182. doi:10.1016/j.rse.2009.08.016

Fu, D., Xia, X., Duan, M., Zhang, X., Li, X., Wang, J., and Liu, J. (2018). Mapping nighttime PM2.5 from VIIRS DNB using a linear mixed-effect model. Atmospheric Environment, 178(January), 214–222. doi:10.1016/j.atmosenv.2018.02.001

Fu, Y., Li, R., Huang, J., Bergeron, Y., Fu, Y., Wang, Y., and Gao, Z. (2018). Satellite-Observed Impacts of Wildfires on Regional Atmosphere Composition and the Shortwave Radiative Forcing: A Multiple Case Study. Journal of Geophysical Research: Atmospheres, 123(15), 8326–8343. doi:10.1029/2017JD027927

Gatebe, C. K., Varnai, T., Poudyal, R., Ichoku, C., and King, M. D. (2012). Taking the pulse of pyrocumulus clouds. Atmospheric Environment, 52, 121–130. doi:10.1016/j.atmosenv.2012.01.045

Generoso, S., Bey, I., Attié, J.-L., and Bréon, F.-M. (2007). A satellite- and model-based assessment of the 2003 Russian fires: Impact on the Arctic region. Journal of Geophysical Research: Atmospheres, 112(D15). doi:10.1029/2006JD008344

Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Kasibhatla, P. (2006). Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics, 6(4), 957–974. doi:10.5194/acp-6-957-2006

Giglio, L. (2007). Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sensing of Environment, 108(4), 407–421. doi:10.1016/j.rse.2006.11.018

Giglio, L. (2013). MODIS Collection 5 Active Fire Product User’s Guide (2.5.). Retrieved from http://modis-fire.umd.edu/files/MODIS_Fire_Users_Guide_2.5.pdf

Giglio, L., Csiszar, I., Restás, Á., Morisette, J. T., Schroeder, W., Morton, D., and Justice, C. O. (2008). Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sensing of Environment, 112(6), 3055–3063. doi:10.1016/j.rse.2008.03.003

Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J. (2003). An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sensing of Environment, 87(2–3), 273–282. doi:10.1016/S0034-4257(03)00184-6

Giglio, L., Schroeder, W., and Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. doi:10.1016/j.rse.2016.02.054

Gordon, H., Field, P. R., Abel, S. J., Dalvi, M., Grosvenor, D. P., Hill, A. A., … Carslaw, K. S. (2018). Large simulated radiative effects of smoke in the south-east Atlantic. Atmospheric Chemistry and Physics, 18(20), 15261–15289. doi:10.5194/acp-18-15261-2018

Govaerts, Y., Wooster, M., Freeborn, P., Lattanzio, A., and Roberts, G. (2010). Algorithm Theoretical Basis Document for MSG SEVIRI Fire Radiative Power (FRP) Characterisation (2.6.).

Govaerts, Y., Wooster, M., Lattanzio, A., Roberts, G., Freeborn, P., Xu, W., and Trigo, I. (2008). The operational MSG/SEVIRI fire radiative power product generated at the LAND SAF. In Proceedings of 2008 EUMETSAT Meteorological Satellite Conference. Darmstadt, Germany: EUMETSAT.

Govaerts, Y., Wooster, M., Lattanzio, A., and Roberts, G. (2008). MSG SEVIRI Fire Radiative Power (FRP) Characterisation Algorithm Theoretical Basis Document (2.1.). Darmstadt, Germany.

Hao, W. M., and Liu, M.-H. (1994). Spatial and temporal distribution of tropical biomass burning. Global Biogeochemical Cycles, 8(4), 495–503. doi:10.1029/94GB02086

Heil, A., Kaiser, J. W., van der Werf, G. R., Wooster, M. J., Schultz, M. G., and van der Gon, H. D. (2010). Assessment of the Real-Time Fire Emissions (GFASv0) by MACC. Reading, England. Retrieved from http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/601-700/tm628.pdf

Henderson, S. B., Burkholder, B., Jackson, P. L., Brauer, M., and Ichoku, C. (2008). Use of MODIS products to simplify and evaluate a forest fire plume dispersion model for PM10 exposure assessment. Atmospheric Environment, 42(36), 8524–8532. doi:10.1016/j.atmosenv.2008.05.008

Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., Granier, C., and Simon, M. (2004). Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. Journal of Geophysical Research: Atmospheres, 109(D14). doi:10.1029/2003JD003666

Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., … Zibordi, G. (2001). An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research: Atmospheres, 106(D11), 12067–12097. doi:10.1029/2001JD900014

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., … Smirnov, A. (1998). AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sensing of Environment, 66(1). doi:10.1016/S0034-4257(98)00031-5

Hyer, E. (2009). FLAMBE Biomass Burning Emissions: A Four-Year Hourly Dataset 2005-2008.

Hyer, E. J., Reid, J. S., Prins, E. M., Hoffman, J. P., Schmidt, C. C., Miettinen, J. I., and Giglio, L. (2013). Patterns of fire activity over Indonesia and Malaysia from polar and geostationary satellite observations. Atmospheric Research, 122, 504–519. doi:10.1016/j.atmosres.2012.06.011

Ichoku, C., Kaufman, Y. ., Remer, L. ., and Levy, R. (2004). Global aerosol remote sensing from MODIS. Advances in Space Research, 34(4), 820–827. doi:10.1016/j.asr.2003.07.071

Ichoku, C. (2003). MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000. Journal of Geophysical Research, 108(D13), 8499. doi:10.1029/2002JD002366

Ichoku, C. (2005). Quantitative evaluation and intercomparison of morning and afternoon Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol measurements from Terra and Aqua. Journal of Geophysical Research, 110(D10), D10S03. doi:10.1029/2004JD004987

Ichoku, C., Giglio, L., Wooster, M. J., and Remer, L. A. (2008). Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, 112(6), 2950–2962. doi:10.1016/j.rse.2008.02.009

Ichoku, C., Kahn, R., and Chin, M. (2012). Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmospheric Research, 111, 1–28. doi:10.1016/j.atmosres.2012.03.007

Ichoku, C., Levy, R., Kaufman, Y. J., Remer, L. A., Li, R.-R., Martins, V. J., … Pietras, C. (2002). Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor. Journal of Geophysical Research, 107(D13), 4179. doi:10.1029/2001JD001302

Ito, A., and Penner, J. E. (2004). Global estimates of biomass burning emissions based on satellite imagery for the year 2000. Journal of Geophysical Research: Atmospheres, 109(D14). doi:10.1029/2003JD004423

Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., … Kaufman, Y. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1–2), 244–262. doi:10.1016/S0034-4257(02)00076-7

Kahn, R. A., Nelson, D. L., Garay, M. J., Levy, R. C., Bull, M. A., Diner, D. J., … Remer, L. A. (2009). MISR Aerosol Product Attributes and Statistical Comparisons With MODIS. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 4095–4114. doi:10.1109/TGRS.2009.2023115

Kahn, R. A., Li, W.-H., Moroney, C., Diner, D. J., Martonchik, J. V., and Fishbein, E. (2007). Aerosol source plume physical characteristics from space-based multiangle imaging. Journal of Geophysical Research, 112(D11), D11205. doi:10.1029/2006JD007647

Kaiser, J. W., Flemming, J., Schultz, M. G., Suttie, M., and Wooster, M. J. (2009). The MACC Global Fire Assimilation System: First Emission Products (GFASv0). Reading, England. Retrieved from http://www.gmes-atmosphere.eu/about/project_structure/input_data/d_fire/lit/kaiser09mgf.pdf

Kaiser, J. W., Suttie, M., Flemming, J., Morcrette, J.-J., Boucher, O., Schultz, M. G., … Yamasoe, M. A. (2009). Global Real-time Fire Emission Estimates Based on Space-borne Fire Radiative Power Observations. In T. Nakajima and M. A. Yamasoe (Eds.), AIP Conference Proceedings (pp. 645–648). American Institute of Physics. doi:10.1063/1.3117069

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., … van der Werf, G. R. (2012). Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), 527–554. doi:10.5194/bg-9-527-2012

Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., … Setzer, A. W. (1998). Potential global fire monitoring from EOS-MODIS. Journal of Geophysical Research, 103(D24), 32215–32238. doi:10.1029/98JD01644

Kaufman, Y. J., Tucker, C. J., and Fung, I. (1990). Remote sensing of biomass burning in the tropics. Journal of Geophysical Research, 95(D7), 9927. doi:10.1029/JD095iD07p09927

Langmann, B., Duncan, B., Textor, C., Trentmann, J., and van der Werf, G. R. (2009). Vegetation fire emissions and their impact on air pollution and climate. Atmospheric Environment, 43(1), 107–116. doi:10.1016/j.atmosenv.2008.09.047

Lattanzio, A., Wooster, M., and Freeborn, P. (2010). Product User Manual Fire Radiative Power (1.5.).

Lavoué, D., Liousse, C., Cachier, H., Stocks, B. J., and Goldammer, J. G. (2000). Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. Journal of Geophysical Research, 105(D22), 26871–26890. doi:10.1029/2000JD900180

Levy, R. C., Remer, L. a., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21), 10399–10420. doi:10.5194/acp-10-10399-2010

Liousse, C., Guillaume, B., Grégoire, J. M., Mallet, M., Galy, C., Pont, V., … Van Velthoven, P. (2010). Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols. Atmospheric Chemistry and Physics, 10(19), 9631–9646. doi:10.5194/acp-10-9631-2010

Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Eddleman, H., and Cachier, H. (1996). A global three-dimensional model study of carbonaceous aerosols. Journal of Geophysical Research: Atmospheres, 101(D14), 19411–19432. doi:10.1029/95JD03426

Livingston, J. M., Redemann, J., Shinozuka, Y., Johnson, R., Russell, P. B., Zhang, Q., … Ramachandran, S. (2014). Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008. Atmospheric Chemistry and Physics, 14, 2015–2038. doi:10.5194/acp-14-2015-2014

Lobert, J. M., and Warnatz, J. (1993). Emissions from the combustion process in vegetation. In P. J. Crutzen and J. G. Goldammer (Eds.), Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires (pp. 15–37). New York: John Wiley & Sons Ltd.

McNaughton, S. J., Stronach, N. R. H., and Georgiadis, N. J. (1998). Combustion in Natural Fires and Global Emissions Budgets. Ecological Applications, 8(2), 464–468. doi:10.1890/1051-0761(1998)008[0464:CINFAG]2.0.CO;2

Michel, C., Liousse, C., Grégoire, J.-M., Tansey, K., Carmichael, G. R., and Woo, J.-H. (2005). Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns. Journal of Geophysical Research: Atmospheres, 110(D9). doi:10.1029/2004JD005461

Morisette, J. T., Giglio, L., Csiszar, I., and Justice, C. O. (2005). Validation of the MODIS active fire product over Southern Africa with ASTER data. International Journal of Remote Sensing, 26(19), 4239–4264. doi:10.1080/01431160500113526

Morisette, J. T., Giglio, L., Csiszar, I., Setzer, A., Schroeder, W., Morton, D., and Justice, C. O. (2005). Validation of MODIS Active Fire Detection Products Derived from Two Algorithms. Earth Interactions, 9(9), 1–25. doi:10.1175/EI141.1

Mota, B., and Wooster, M. J. (2018). A new top-down approach for directly estimating biomass burning emissions and fuel consumption rates and totals from geostationary satellite fire radiative power (FRP). Remote Sensing of Environment, 206(February 2017), 45–62. doi:10.1016/j.rse.2017.12.016

Mu, M., Randerson, J. T., van der Werf, G. R., Giglio, L., Kasibhatla, P., Morton, D., … Wennberg, P. O. (2011). Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. Journal of Geophysical Research, 116(D24), D24303. doi:10.1029/2011JD016245

Nelson, D. L., Chen, Y., Kahn, R. A., Diner, D. J., and Mazzoni, D. (2008). Example applications of the MISR INteractive eXplorer (MINX) software tool to wildfire smoke plume analyses. In W. M. Hao (Ed.), Proc. SPIE 7089, Remote Sensing of Fire: Science and Application (p. 708909). doi:10.1117/12.795087

Nelson, D., Garay, M., Kahn, R., and Dunst, B. (2013). Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX). Remote Sensing, 5(9), 4593–4628. doi:10.3390/rs5094593

Nicolae, V., Dandocsi, A., Marmureanu, L., and Talianu, C. (2018). Biomass burning aerosol over Romania using dispersion model and Calipso data. In D. Nicolae, A. Makoto, A. Vassilis, D. Balis, A. Behrendt, A. Comeron, … U. Wandinger (Eds.), EPJ Web of Conferences (Vol. 176, p. 04012). doi:10.1051/epjconf/201817604012

Peterson, D. (2012). Retrieval of Sub-Pixel-Based Fire Intensity and its Application for Characterizing Smoke Injection Heights and Fire Weather in North America. University of Nebraska - Lincoln. Retrieved from http://digitalcommons.unl.edu/geoscidiss/30/

Peterson, D., Hyer, E., and Wang, J. (2013). A short-term predictor of satellite-observed fire activity in the North American boreal forest: Toward improving the prediction of smoke emissions. Atmospheric Environment, 71, 304–310. doi:10.1016/j.atmosenv.2013.01.052

Petrenko, M., Kahn, R., Chin, M., Soja, A., and Kucsera, T. (2012). The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART. Journal of Geophysical Research, 117(D18), D18212. doi:10.1029/2012JD017870

Prins, E. M., McNamara, D., and Schmidt, C. C. (2004). Global Geostationary Fire Monitoring System. In 13th Conference on Satellite Meteorology and Oceanography, 84th AMS Annual Meeting. Norfolk, VA: American Meteorological Society. Retrieved from https://ams.confex.com/ams/pdfpapers/78889.pdf

Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., … Zender, C. S. (2006). The impact of boreal forest fire on climate warming. Science (New York, N.Y.), 314(5802), 1130–2. doi:10.1126/science.1132075

Reid, J. S., Eck, T. F., Christopher, S. a., Koppmann, R., Dubovik, O., Eleuterio, D. P., … Zhang, J. (2005). A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics, 5(3), 827–849. doi:10.5194/acp-5-827-2005

Reid, J. S., Hyer, E. J., Prins, E. M., Westphal, D. L., Zhang, J., Wang, J., … Hoffman, J. P. (2009). Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(3), 144–162. doi:10.1109/JSTARS.2009.2027443

Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., … Holben, B. N. (2005). The MODIS Aerosol Algorithm, Products, and Validation. Journal of the Atmospheric Sciences, 62(4), 947–973. doi:10.1175/JAS3385.1

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., … Woollen, J. (2011). MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 24(14), 3624–3648. doi:10.1175/JCLI-D-11-00015.1

Roberts, G. J., and Wooster, M. J. (2008). Fire Detection and Fire Characterization Over Africa Using Meteosat SEVIRI. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 1200–1218. doi:10.1109/TGRS.2008.915751

Roberts, G. J., Wooster, M. J., Perry, G. L. W., Drake, N., Rebelo, L.-M., and Dipotso, F. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery. Journal of Geophysical Research, 110(D21), D21111. doi:10.1029/2005JD006018

Roberts, G., Wooster, M. J., Freeborn, P. H., and Xu, W. (2011). Integration of geostationary FRP and polar-orbiter burned area datasets for an enhanced biomass burning inventory. Remote Sensing of Environment, 115(8), 2047–2061. doi:10.1016/j.rse.2011.04.006

Roberts, G., and Wooster, M. (2008). SEVIRI Fire Radiative Power (FRP) Dataset. London, UK. Retrieved from http://cedadocs.badc.rl.ac.uk/770/1/SEVIRI_FRP_documentdesc.pdf

Schroeder, W., Ruminski, M., Csiszar, I., Giglio, L., Prins, E., Schmidt, C., and Morisette, J. (2008). Validation analyses of an operational fire monitoring product: The Hazard Mapping System. International Journal of Remote Sensing, 29(20), 6059–6066. doi:10.1080/01431160802235845

Schroeder, W., Morisette, J. T., Csiszar, I., Giglio, L., Morton, D., and Justice, C. O. (2005). Characterizing Vegetation Fire Dynamics in Brazil through Multisatellite Data: Common Trends and Practical Issues. Earth Interactions, 9(13), 1–26. doi:10.1175/EI120.1

Schroeder, W., Prins, E., Giglio, L., Csiszar, I., Schmidt, C., Morisette, J., and Morton, D. (2008). Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sensing of Environment, 112(5), 2711–2726. doi:10.1016/j.rse.2008.01.005

Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J. G., … van het Bolscher, M. (2008). Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles, 22(2), 1–17. doi:10.1029/2007GB003031

Seiler, W., and Crutzen, P. J. (1980). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2(3), 207–247. doi:10.1007/BF00137988

Soares, J., Sofiev, M., and Hakkarainen, J. (2015). Uncertainties of wild-land fires emission in AQMEII phase 2 case study. Atmospheric Environment, 115, 361–370. doi:10.1016/j.atmosenv.2015.01.068

Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., … Kukkonen, J. (2009). An operational system for the assimilation of satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmospheric Chemistry and Physics Discussions, 9, 6483–6513. doi:10.5194/acpd-9-6483-2009

Solomos, S., Amiridis, V., Zanis, P., Gerasopoulos, E., Sofiou, F. I., Herekakis, T., … Kontoes, C. (2015). Smoke dispersion modeling over complex terrain using high resolution meteorological data and satellite observations – The FireHub platform. Atmospheric Environment, 119, 348–361. doi:10.1016/j.atmosenv.2015.08.066

Sreenivas, G., Mahesh, P., Subin, J., Kanchana, A. L., Rao, P. V. N., and Dadhwal, V. K. (2016). Influence of Meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a suburban site of India. Atmospheric Chemistry and Physics, 16(6), 3953–3967. doi:10.5194/acp-16-3953-2016

Strand, T., Gullett, B., Urbanski, S., O’Neill, S., Potter, B., Aurell, J., … Rorig, M. (2016). Grassland and forest understorey biomass emissions from prescribed fires in the south-eastern United States – RxCADRE 2012. International Journal of Wildland Fire, 25(1), 102–113. doi:10.1071/WF14166

Stroppiana, D., Brivio, P. a., Grégoire, J.-M., Liousse, C., Guillaume, B., Granier, C., … Pétron, G. (2010). Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data. Atmospheric Chemistry and Physics, 10(24), 12173–12189. doi:10.5194/acp-10-12173-2010

Urbanski, S. P., Hao, W. M., and Nordgren, B. (2011). The wildland fire emission inventory: Western United States emission estimates and an evaluation of uncertainty. Atmospheric Chemistry and Physics, 11, 12973–13000. doi:10.5194/acp-11-12973-2011

Vadrevu, K., and Lasko, K. (2018). Intercomparison of MODIS AQUA and VIIRS I-Band Fires and Emissions in an Agricultural Landscape—Implications for Air Pollution Research. Remote Sensing, 10(7), 978. doi:10.3390/rs10070978

Val Martin, M., Logan, J. a., Kahn, R. a., Leung, F.-Y., Nelson, D. L., and Diner, D. J. (2010). Smoke injection heights from fires in North America: analysis of 5 years of satellite observations. Atmospheric Chemistry and Physics, 10(4), 1491–1510. doi:10.5194/acp-10-1491-2010

Val Martin, M., Kahn, R. a., Logan, J. a., Paugam, R., Wooster, M., and Ichoku, C. (2012). Space-based observational constraints for 1-D fire smoke plume-rise models. Journal of Geophysical Research, 117(D22), D22204. doi:10.1029/2012JD018370

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano, a. F. (2006). Interannual variability of global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics Discussions, 6(2), 3175–3226. doi:10.5194/acpd-6-3175-2006

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., … van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735. doi:10.5194/acp-10-11707-2010

van der Werf, G. R., Randerson, J. T., Collatz, G. J., Giglio, L., Kasibhatla, P. S., Arellano, A. F., … Kasischke, E. S. (2004). Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science (New York, N.Y.), 303(5654), 73–6. doi:10.1126/science.1090753

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., … Kasibhatla, P. S. (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9(2), 697–720. doi:10.5194/essd-9-697-2017

van Donkelaar, A., Martin, R. V., Levy, R. C., da Silva, A. M., Krzyzanowski, M., Chubarova, N. E., … Cohen, A. J. (2011). Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. Atmospheric Environment, 45(34), 6225–6232. doi:10.1016/j.atmosenv.2011.07.068

van Leeuwen, T. T., van der Werf, G. R., Hoffmann, A. A., Detmers, R. G., Rücker, G., French, N. H. F., … Trollope, W. S. W. (2014). Biomass burning fuel consumption rates: a field measurement database. Biogeosciences, 11(24), 7305–7329. doi:10.5194/bg-11-7305-2014

Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., and Roberts, G. J. (2009). An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. Journal of Geophysical Research, 114(D18), D18205. doi:10.1029/2008JD011188

Ward, D. E., Susott, R. A., Kauffman, J. B., Babbitt, R. E., Cummings, D. L., Dias, B., … Setzer, A. W. (1992). Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment. Journal of Geophysical Research, 97(D13), 14601. doi:10.1029/92JD01218

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. a., Orlando, J. J., and Soja, a. J. (2011). The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. doi:10.5194/gmd-4-625-2011

Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X., … Wynne, K. K. (2006). Estimating emissions from fires in North America for air quality modeling. Atmospheric Environment, 40(19), 3419–3432. doi:10.1016/j.atmosenv.2006.02.010

Wisnowski, J. W., Montgomery, D. C., and Simpson, J. R. (2001). A Comparative analysis of multiple outlier detection procedures in the linear regression model. Computational Statistics & Data Analysis, 36(3), 351–382. doi:10.1016/S0167-9473(00)00042-6

Wooster, M. J. (2003). Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, 86(1), 83–107. doi:10.1016/S0034-4257(03)00070-1

Wooster, M. J. (2002). Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophysical Research Letters, 29(21), 2027. doi:10.1029/2002GL015487

Wooster, M. J., Roberts, G., Perry, G. L. W., and Kaufman, Y. J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research, 110(D24), D24311. doi:10.1029/2005JD006318

Xu, W., Wooster, M. J., Roberts, G., and Freeborn, P. (2010). New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sensing of Environment, 114(9), 1876–1895. doi:10.1016/j.rse.2010.03.012

Yang, Z., Wang, J., Ichoku, C., Hyer, E., and Zeng, J. (2013). Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub-Saharan African region. Journal of Geophysical Research: Atmospheres, 118(21), 12139–12157. doi:10.1002/2013JD020644

Yokelson, R. J., Burling, I. R., Urbanski, S. P., Atlas, E. L., Adachi, K., Buseck, P. R., … Wold, C. E. (2011). Trace gas and particle emissions from open biomass burning in Mexico. Atmospheric Chemistry and Physics, 11, 6787–6808. doi:10.5194/acp-11-6787-2011

Yurganov, L. N., Rakitin, V., Dzhola, A., August, T., Fokeeva, E., George, M., … Strow, L. (2011). Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data. Atmospheric Chemistry and Physics, 11, 7925–7942. doi:10.5194/acp-11-7925-2011

Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., and Huang, H.-C. (2012). Near-real-time global biomass burning emissions product from geostationary satellite constellation. Journal of Geophysical Research, 117(D14), D14201. doi:10.1029/2012JD017459

Zhang, X., Kondragunta, S., Schmidt, C., and Kogan, F. (2008). Near real time monitoring of biomass burning particulate emissions (PM2.5) across contiguous United States using multiple satellite instruments. Atmospheric Environment, 42(29), 6959–6972. doi:10.1016/j.atmosenv.2008.04.060