AGU Fall Meeting 2014
GC53B-0519

Contact

Addresses:
1) Science Systems and Applications, Inc.

Lanham, MD 20706
Emails:
Variable Description g

2) NASA Goddard Space Flight Center, Org. 613
luke.ellison@nasa.gov
Aerosol Optical Depth (AOD) contributable to a

Luke Ellison'¢, Charles Ichoku?
http://feer.gsfc.nasa.gov/

Greenbelt, MD 20771
(SSA'I
charles.ichoku@nasa.gov

Abstract

With the advent of the Fire Energetics and Emissions Research (FEER) global top-down biomass burning emissions product from
NASA Goddard Space Flight Center, a subsequent effort to analyze and evaluate some of the main (particulate and gaseous)

FEER Version 1.0 Emissions Product in Africa
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top-down method of estimating biomass-burning emissions, FEERv1.0 is able to yield higher and more realistic emissions than Be Smoke aerosol mass extinction efficiency.
previously obtainable using bottom-up methods. This effort is carried out in conjunction with a NASA-funded interdisciplinary FRP  Fire Radiative Power.
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§§§§§ ol possible in order to obtain a confident understanding of their interactions and feedbacks with the hydrological cycle in NSSA. A first- Mx  Mass of smoke emitted species.
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Figure 1 [above]: The FEERv1.0 algorithm for deriving emissions from
the FEER Coefficient of Emission (Ce) product is simply Fire
Radiative Energy (FRE) multiplied by Ce (Ichoku & Ellison,
2014; Ichoku & Kaufman, 2005). FRE is obtained in this
case from the GFASv1.0 (Kaiser et al., 2012, 2009).

Figure 2 [below]: Emissions of various species for FEERv1.0
(Ichoku & Ellison, 2014), GFEDv3.1 (Van der Werf et al.,
2010), GFASv1.0 (Kaiser et al. 2012, 2009) and

QFEDv2.4r6 (Darmenov & da Silva, 2013). The
spatial resolutions are plotted at 0.5°x0.5°
except for QFED which is plotted at

0.5°x0.625° (latxlon), and whose
emissions values are

Overall Uncertainty Estimations of FEER Version 1.0

An effort was made to estimate the overall uncertainty in FEER emissions using rough estimates for uncertainties of the
contributing variables: first from the literature, if available; otherwise, estimated from our data and relevant equations.
Assuming zero covariance between all involved variables, the uncertainty calculated from the propagation of error is
given in the equation to the right. This equation is applied to the FEER equations below, nAfN:
along with the values in the tables below, to estimate FEER uncertainty (see Fig. 3). Of Kiz1n) = JZ.:l( ox; ) O%;
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Figure 3. Relationships of uncertainties of
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