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ABSTRACT 
 
A new emissions inventory of particulate matter (PM) is being derived mainly from remote sensing 

data using fire radiative power (FRP) and aerosol optical depth (AOD) retrievals from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) instrument, as well as wind data from the Modern Era 
Retrospective-Analysis for Research and Applications (MERRA) reanalysis dataset, which spans the 
satellite era.  This product is generated using a coefficient of emission, Ce, that has been produced on a 
1×1° global grid such that, when it is multiplied with satellite measurements of FRP or its time-
integrated equivalent fire radiative energy (FRE) retrieved over a given area and time period, the 
corresponding PM emissions are estimated.  This methodology of using Ce to derive PM emissions is 
relatively new and advantageous for near real-time air quality applications compared to current methods 
based on post-fire burned area that may not provide emissions in a timely manner.  Furthermore, by 
using FRP to characterize a fire’s output, it will represent better accuracy than the use of raw fire pixel 
counts, since fires in individual pixels can differ in size and strength by orders of magnitude, resulting in 
similar differences in emission rates.  Here we will show examples of this effect and how this new 
emission inventory can properly account for the differing emission rates from fires of varying strengths.  
We also describe the characteristics of the new emissions inventory, and propose the process chain of 
incorporating it into models for air quality applications. 

 
INTRODUCTION 

 
Fires are a global phenomenon that persists in six of the seven continents (except in ice-covered 

Antarctica), and can affect not only the local climate, but also the global climate as a whole.  Wildfires 
emit vast amounts of smoke comprising particulate matter (PM), trace gases and water vapor into the 
atmosphere.  Unlike most other phenomena that affect climate variability, such as sea surface 
temperature that changes relatively slowly, the sporadic occurrence and rapidly evolving nature of fires 
makes them particularly difficult to characterize and monitor.  However, to understand the impact of 
fires on air quality and climate systems, and therefore on human health and climate change, smoke 
emission is a critical process that needs to be well understood at local, regional and global scales. 

 
Characterizing the smoke emission output from fires at regional to global scales is being enabled by 

satellite observations, unlike the pre-satellite era when such activities were only local in scope.  Within 
the last decade, the number of satellite-based smoke emissions inventories has been increasing as 
scientists are researching different methods for deriving accurate PM emissions from direct observation 
of active fires.  One of the first such methods proposed was that of Ichoku & Kaufman (2005)1 that uses 
fire and aerosol observational data from satellite to generate a coefficient of emission, Ce, that relates 
fire strength to its PM emissions.  Work on this algorithm has continued and is currently resulting in a 
first version of an emissions product by the Fire Energetics and Emissions Research (FEER)2 project 
group.  This paper summarizes the algorithm used to generate coefficients of emission and subsequently 



describes the process chain that shows how this data can be used to generate emissions from satellite 
measurements of fire radiative energy (FRE) release rate or power (FRP), which can then be input into 
models for forecasting or monitoring purposes. 

 
METHODOLOGY 

 
Smoke Emissions from Satellite Observations 

 
Several methods have been proposed for estimating emissions on a global scale.  The traditional 

method used to estimate different species of particulate or gaseous emissions is described in e.g. 
Andreae and Merlet (2001)3 as, 

 
Equation (1)      𝑀! = 𝐸𝐹! ∙𝑀!"#$%&&  
 
where 

𝑀! = mass of emitted smoke species  𝑥 
𝐸𝐹! = emission factor of emitted smoke species  𝑥  

𝑀!"#$%&& = dry mass of combusted fuel 
  

Mbiomass is often calculated from Seiler and Crutzen (1980)4 as, 
 
Equation (2)      𝑀!"#$%&& = 𝐴 ∙ 𝐵 ∙ 𝛼 ∙ 𝛽  
 
where 

𝐴 = burned area  
𝐵 = biomass density  
𝛼 = fraction of above ground biomass  
𝛽 = burn efficiency  

 
However, the variables used in Equation 2 are difficult or even impossible to measure accurately and on 
a large and global scale.  With the advent of fire detection algorithms from satellite, notably on the 
Moderate Resolution Imaging Spectroradiometer (MODIS) that flies on both the Earth Observing 
System (EOS) Terra and Aqua platforms, new methods have been able to estimate some of these 
parameters via conversion from fire pixel counts and other vegetation or fire-related satellite 
observations.  One such emissions inventory that has been widely used for analyzing global emissions 
from wildfire is the Global Fire Emissions Database (GFED).5,6 

 
It has been recognized, however, that fire pixel counts represent only a qualitative measurement of 

fire activity since fire intensities can vary by several orders of magnitude and also, in the case of 
MODIS for instance, a pixel ground footprint area can also vary by an order of magnitude, thereby 
adding more uncertainty in extending quantitative analyses to fire pixel count data.7  Consequently, new 
smoke emission inventories currently being produced have been shifting towards the use of fire radiative 
power (FRP) and its temporally integrated fire radiative energy (FRE), which are quantitative 
measurements of emitted radiant energy of fires.  Some such examples of FRP-based or related 
emissions inventories are the QFED8, GFAS9 and FLAMBE10 products. 

 
The Fire Energetics and Emissions Research (FEER, http://feer.gsfc.nasa.gov/)2 project group is 

currently producing a new smoke emissions product in accordance with the method outlined in Ichoku 
and Kaufman (2005),1 with some necessary updates to the algorithm.  However, this product is unique in 
the sense that it is based solely on empirical methods using observational measurements of both FRP 
and AOD from MODIS to determine the rates of emission for a given region.  The algorithm 
methodology is outlined in the next section. 



 
Coefficient of Emission Gridded Product 

 
The premise of the Ichoku and Kaufman (2005)1 paper is that fire radiative energy (FRE), or the 

temporal integral of fire radiative power (FRP), is directly proportional to the amount of dry biomass 
combusted11 and that the release of specific aerosols or trace gases is also directly proportional to the dry 
mass combusted according to Equation 1.  It then logically follows that the mass of smoke aerosol, for 
instance, can be linearly related to FRE, without the complexity of determining A, B, α, β or even EFPM.  
Similarly, the rate of aerosol emission can be related to that of FRE release (i.e. FRP).  Thus, the 
following relationships are established: 

 
Equation (3)      𝑅!" = 𝐶! ∙ 𝐹𝑅𝑃  
Equation (4)      𝑀!" = 𝐶! ∙ 𝐹𝑅𝐸  
 
where 

𝑅!" = rate of smoke aerosol emission  
𝑀!" = mass of smoke aerosol emission  
𝐶! = coefficient of emission   

 
The coefficient of emission, or Ce, is the coefficient that directly relates radiative power from a fire to its 
smoke aerosol emission rate.  This study currently only focuses on generating Ce for PM emissions, 
although work is being done to extend this product to other common emitted species.  For a given 
species such as PM, different Ce values are expected for different biome types and locations.  Thus, a Ce 
product has been generated on a 1×1° global grid such that FRE measurements within any of the grid 
cells multiplied by the corresponding Ce values according to Equation 4 should consistently give the PM 
emissions generated from those fires. 

 
In order to generate this Ce product, it was noted from Equation 3 that Ce can be taken as the slope of 

the trend line of the scatterplot between Rsa and FRP for each grid cell.  FRP is easily obtained from the 
MODIS fire product (MOD14/MYD14);12,13 Rsa can be estimated from the difference between 
background AOD measurements and those affected by the smoke plume using the MODIS aerosol 
product (MOD04_L2/MYD04_L2),14,15 and from wind vectors from the Modern Era Retrospective-
Analysis for Research and Applications (MERRA) reanalysis16,17 or similar dataset.  The original 
algorithm as described in Ichoku and Kaufman (2005)1 calculates Rsa initially on a per-pixel basis as the 
total smoke aerosol mass, Msa, over the time, T, it takes the smoke to clear the designated area.  T is 
estimated using pixel geometry and 850 mbar (corresponding to an altitude of about 1.5 km) wind speed 
data from the meteorological datasets.  Msa is calculated as the product of the pixel area and the aerosol 
mass density, Md, which in turn is estimated from the surrounding AOD values at 550 nm.  The updated 
and current algorithm expands on its predecessor by using wind direction as well to more accurately 
determine AOD associated with the plume, and to determine if there is an influx of smoke generated 
elsewhere into the vicinity of the fire under consideration.  Wind magnitudes are also used in 
conjunction with relative fire locations within an aerosol pixel to improve values of T.  Rsa and 
preceding parameters are also calculated first on a per-pixel basis before aggregating the calculations to 
a regional or grid-basis, thereby theoretically reducing the uncertainty in estimating these parameters on 
a larger scale. 

 
Once the pixel-level smoke emission rates were generated using data from both Terra and Aqua for 

the years 2003-2010, the values for Rsa and FRP were aggregated into 1×1° grid cells for the entire 
globe.  However, as part of this process of aggregation and in order to remove contaminated data, certain 
key parameters and corresponding thresholds were identified and filtered out of the dataset.  Thus, the 
resulting filtered dataset produced much cleaner results, showing clear trends that were previously 
undetectable.  There were still a few examples, however, where clear outliers were adversely affecting 



the trend line of the scatterplots between Rsa and FRP measurements, and so an outlier correction 
algorithm was also created specifically for use with the type of non-normal distribution of points 
observed between Rsa and FRP.  This outlier algorithm was able to correct several misleading results, 
after which the final aggregation of the data within each grid cell was performed.  The resulting Ce 
gridded map is shown in Figure 1.  Individual Ce maps were generated for both Terra and Aqua data, but 
having observed that the differences between the two are not biased in any one direction, the two 
datasets were combined to gain greater spatial coverage.  Figure 1 currently only shows values with the 
highest level of confidence. 

 
Figure 1. Coefficients of emission are plotted globally on a 1×1° map.  These values were obtained 
using an updated algorithm to that described in Ichoku and Kaufman (2005),1 by fitting trends between 
FRP and Rsa generated from MODIS FRP and AOD data from both Terra and Aqua from 2003-2010. 

 
 

RESULTS AND CONCLUSIONS 
 

Using Ce to Generate PM Emissions 
 
In much the same way as Ce was generated using Equation 3 (as viewed in Figure 1), the Ce values 

can be used along with any given FRP measurements from any instrument for a particular region to 
determine the instantaneous emission rate using Equation 3 or its emissions over a certain time period 
using Equation 4.  An example of this process is given in Figure 2 using FRP data observed by the 
SEVIRI sensor aboard the Meteosat geostationary satellite, as calculated by the Land Surface Analysis 
Satellite Applications Facility (LSA SAF)18 for northern sub-Saharan Africa.  One measurement of the 
hourly FRP product at 13:00 GMT on January 1, 2010 was extracted and appropriately multiplied 
against the Ce product to produce emission rates across the region for that time of observation.  Notice 
how Ce modulates the PM emission rate relative to how much radiative power is being produced in each 
grid cell. 

 



Figure 2. The LSA SAF FRP dataset from SEVIRI outputs hourly FRP values on a 1×1° grid over 
Africa.  FRP values over northern sub-Saharan Africa are shown from January 1, 2010 at 13:00 GMT in 
the left-hand image, whereas the right-hand image is the corresponding emission rates generated using 
FEER’s emissions algorithm. 

  
 
In order to obtain the total emissions for a given region and time period using Equation 4, however, 

the FRE corresponding to that region and time period needs to be accurately known.  FRE is derived by 
integrating successive FRP measurements over a desired time period using a sufficiently small time step 
in order to be accurately resolved.  Given that SEVIRI is able to measure FRP frequently over Africa, 
FRP data from the LSA SAF product has been integrated over January 2010 for northern sub-Saharan 
Africa, and then multiplied by Ce to produce the total PM emissions over the region for that time period 
(see Figure 3). 

 
Figure 3. Hourly LSA SAF FRP values were temporally integrated over the month of January 2010 to 
generate the FRE values over northern sub-Saharan Africa as shown in the left-hand image.  Total PM 
emissions corresponding to that time period that were generated using FEER’s emissions algorithm is 
shown in the right-hand image. 

  
 
According to Kaiser et al. (2012),9 GFASv1.0 reports an average annual emission of 7.874 Tg/yr 

and GFED3.1 reports 8.822 Tg/yr over the northern hemispherical Africa region (“NHAf”).  In 
comparison, this FEER emissions algorithm reports about 12.2 Tg over the same region for the year 
2010.  This somewhat higher value is only based on one year’s worth of data for one region and 
emission species, but the emission output in this region is fairly stable from year to year and therefore 
this result is certainly suggestive of the higher emissions that this algorithm is expected to generate, as is 
also indicated in the aforementioned paper. 



 
Implications for Air Quality and Chemical Transport Modeling 

 
Biomass burning contributes a substantial percentage of global PM emissions that can have a major 

impact on air quality and climate.  It has been repeatedly reported by modelers that current databases 
significantly underestimate these PM emissions.6,19  As such, it is crucial that an accurate database of 
PM emissions from fires be made available to modelers to improve results.  The approach taken in this 
paper in an effort to reduce the current uncertainty is a top-down approach whereby observations of both 
fire and the emitted PM are made and directly correlated, bypassing the use of emission factors and 
other ancillary parameters that are difficult to determine (see Equation 2).  As mentioned in the previous 
section, initial results show that for Northern Africa, an increase in PM emissions has been obtained 
using the Ichoku and Kaufman (2005)1 updated algorithm described in this paper. 

 
This top-down method of deriving PM emissions was originally developed based on the fact that 

Ichoku and Kaufman (2005)1 found reasonable correlation between FRP and smoke PM emission rates 
for different biomes and regions, and by downscaling the process, a global gridded map of Ce has been 
derived.  This product will provide modelers with a near real-time, flexible method of generating PM 
emissions.  This capability is made possible by virtue of the fact that Ce is a relatively static product that 
will be updated only on an annual or multi-annual basis.  Therefore, given the relative stability of this 
product a user may generate his/her own emissions databases simply by using different sources of FRP 
measurements from different sensors over different regions, without going through the entire retrieval 
process.  The lag time in generating emissions from Ce is constrained only by that of obtaining FRP 
retrievals. 

  
Finally, it should be noted that a global emissions product for fire-emitted PM using Ce is in the 

process of being created by the FEER project group, and will be made publically available upon 
completion.  Furthermore, research is also being pursued to expand the product to include emissions of a 
number of other major aerosol and gaseous components of fire emissions for air quality and other 
modeling applications. 
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